[1] KANTOR P B. Foundations of statistical natural language processing[J]. Information Retrieval, 2001,4(1):80-81.
[2] 李霞婷. 基于改进型正反向最大匹配中文分词算法的研究[J]. 信息技术与信息化, 2015(6): 211-212.
[3] XUE N.Chinese word segmentation as character tagging[J]. Computational Linguistics Chinese Language Processing, 2003,8(1):29-47.
[4] 丁振国,张卓,黎靖. 基于 Hash 结构的逆向最大匹配分词算法的改进[J]. 计算机工程与设计, 2008,29(12):3208-3211.
[5] 陶伟. 警务应用中基于双向最大匹配法的中文分词算法实现[J]. 电子技术与软件工程, 2016(4):153-155.
[6] 张玉茹. 中文分词算法之最大匹配算法的研究[J]. 现代计算机, 2011(16):24-26.
[7] 王威. 基于统计学习的中文分词方法的研究[D]. 辽宁:东北大学, 2015.
[8] 杨贵军,徐雪,凤丽洲,等.基于最大匹配算法的似然导向中文分词方法[J].统计与信息论坛, 2019,34(3):18-23.
[9] 侯一民,周慧琼,王政一. 深度学习在语音识别中的研究进展综述[J].计算机应用研究, 2017,34(8):2241-2246.
[10]HAN K, YU D, TASHEV I. Speech emotion recognition using deep neural network and extreme learning machine[J]. Interspeech, 2014:223-227.
[11]卢宏涛,张秦川. 深度卷积神经网络在计算机视觉中的应用研究综述[J]. 数据采集与处理, 2016,31(1):1-17.
[12]奚雪峰,周国栋. 面向自然语言处理的深度学习研究[J]. 自动化学报, 2016,42(10):1445-1465.
[13]BENGIO Y, DUCHARME R, VINCENT P, et al. Aneural probabilistic language model[J]. Journal of Machine Learning Research, 2003,3(6):1137-1155.
[14]COLLEBERT R, WESTON J,BOTTOU L, et al. Natural language processing(almost) from scratch[J]. Journal of Machine Learning Research, 2011,12(1):2493-2537.
[15]ZHENG X,CHEN H,XU T. Deep learning for Chinese word segmentation and POS tagging[C]// Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Seattle: Association for Computational Linguistics, 2013:647-657.
[16]PEI W, GE T, CHANG B. Max-margin tensor neural network for Chinese word segmentation[C]// Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. 2014:293-303.
[17]BENGIO Y, SCHWENK H, SENECAL J S, et al. Neural probabilistic language models[M]. Innovations in Machine Learning. 2006:137-186.
[18]CHEN X, IU X, ZHU C, et al. Gated recursive neural network for Chinese word segmentation[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. 2015:567-572.
[19]CHEN X, QIU X, ZHU C, et al. Long short-term memory neural networks for Chinese word segmentation[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. 2015:1385-1394.
[20]刁琦. 基于循环神经网络语言模型的中文分词研究[D]. 新疆:新疆农业大学,2017.
[21]YAO Y, HUANG Z. Bi-directional LSTM recurrent neural network for Chinese word segmentation[C]// International Conference on Neural Information Processing. 2016:345-353.
[22]JOZEFOWICZ R, ZAREMBA W, SUTSKEVER I.Anempirical exploration of recurrent network architectures[C]// Proceedings of the 32nd International Conference on International Conference on Machine Learning. 2015,37:2342-2350.
[23]李雪莲,段鸿,许牧. 基于门循环单元神经网络的中文分词法[J]. 厦门大学学报(自然科学版), 2017,56(2):237-243.
[24]车金立,唐力伟,邓士杰,等. 基于BI-GRU-CRF模型的中文分词法[J].火力与指挥控制, 2019,44(9):66-71.
[25]黄丹丹,郭玉翠. 融合Attention机制的BI-LSTM-CRF中文分词模型[J]. 软件, 2018, 39(10):260-266.
[26]李文华. 中文分词算法在搜索引擎应用中的运用[J].电脑知识与技术, 2021,17(6):181-182.
[27]刘佳萌. 语音交互智能音箱情感化设计策略研究[D]. 无锡:江南大学,2020.
|