计算机与现代化 ›› 2024, Vol. 0 ›› Issue (11): 106-112.doi: 10.3969/j.issn.1006-2475.2024.11.016
摘要: 针对目前多视图三维重建无法适应高分辨率场景、重建完整性差、忽略全局背景信息等问题,提出一种融合可变形卷积与改进自注意力机制的三维重建网络MVFSAM-CasMVSNet。首先,设计专用于多视图立体重建任务的可变形卷积模块,自适应地调整提取特征的范围,增强深度突变的特征提取能力。其次,考虑到多视图间深度信息的关联性和特征交互,设计一种多视图融合自注意力模块,通过计算复杂度较低的线性自注意力聚合每个视图内部的远程上下文信息,并通过改进的多头注意力捕获参考视图与源视图间的深度依赖关系。最后利用多阶段策略构建匹配代价体并对其进行正则化,使用具有更高分辨率的代价体生成深度图。在DTU数据集上的测试结果显示,该网络与基准模型相比,完整性、准确性、整体性分别提升15.6%、7.4%、11.8%,与现有其他模型相比具有最优的整体性。同时,在Tanks and Temples数据集上的实验结果显示,该网络与基准模型相比平均F-score提升6.5%。该网络在多视图三维重建领域针对高分辨率场景具有优良的重建效果与泛化能力。
中图分类号: