计算机与现代化 ›› 2024, Vol. 0 ›› Issue (12): 66-71.doi: 10.3969/j.issn.1006-2475.2024.12.010

• 算法设计与分析 • 上一篇    下一篇

复杂施工场景下的安全帽佩戴检测算法


  

  1. (1.广东工业大学计算机学院,广东 广州 510006; 2.广东工业大学自动化学院,广东 广州 510006) 
  • 出版日期:2024-12-31 发布日期:2024-12-31
  • 基金资助:
    国家自然科学基金资助项目(62237001)

Safety Helmet Wearing Detection Algorithm for Complex Construction Scenes 

  1. (1. School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China;
    2. School of Automation, Guangdong University of Technology, Guangzhou 510006, China)
  • Online:2024-12-31 Published:2024-12-31

摘要: 针对在施工现场中存在复杂的背景干扰及异物遮挡,从而降低安全帽检测准确度的问题,提出一种复杂施工场景下的安全帽佩戴检测算法。本文改进YOLOv5算法,添加坐标注意力机制(Coordinate Attention, CA),使用Stem Block替换主干网络中的前2层,应用一个添加了坐标注意力机制的解耦检测头(Decoupled detect Head, DH)结构,同时添加额外的大尺度特征提取层。在安全帽数据集上的实验结果表明,改进后的CADH-YOLOv5算法平均检测准确度达到91.2%,能够显著改善复杂施工环境下的安全帽佩戴检测性能,优于同类算法,同时具有一定的实时性。

关键词: 特征提取, 安全帽佩戴检测, 坐标注意力机制, 解耦检测头, 目标检测

Abstract:  In view of complex background interference and foreign object occlusion in the construction scenes, which reduces the accuracy of helmet wearing detection, we propose a safety helmet wearing detection algorithm for complex construction scenes. This paper improves the YOLOv5 algorithm, adding the Coordinate Attention (CA) mechanism, replacing the first two layers in the backbone network using the Stem Block, applying a Decoupled detection Head (DH) structure with the addition of the Coordinate Attention mechanism. At the same time, an additional large-scale feature extraction layer is added. Results on the helmet dataset show that the improved CADH-YOLOv5 algorithm with a mean detection precision of 91.2% can significantly improve the performance of safety helmet wearing detection for complex construction scenes, which is superior to similar algorithms, and has limited real-time performance.

Key words:  , feature extraction; safety helmet wearing detection; coordinate attention; decoupled detection heads; object detect

中图分类号: