计算机与现代化 ›› 2024, Vol. 0 ›› Issue (11): 70-76.doi: 10.3969/j.issn.1006-2475.2024.11.011
摘要: 摘要:工程造价预测在现代工程管理中具有重要意义。然而,受市场波动、人力成本等因素影响,工程造价预测一直具有挑战性。本文提出一种新型多目标浣熊优化算法,并提出基于该算法优化的双向长短期记忆网络(BiLSTM)和注意力机制(Attention)的变电工程造价预测模型。首先,将本文算法与主流多目标优化算法在8个测试问题上进行对比,验证多目标浣熊优化算法的有效性;其次,通过本文算法对预测模型进行优化,实现模型精度提升;通过BiLSTM-Attention模型捕捉历史数据中的潜在关系,提高变电工程造价预测的精度和可靠性;最后,将本文模型与主流的5种模型进行对比,使用某省110 kV变电工程的历史数据作为案例研究。结果显示,本文模型的平均绝对百分比误差为3.71%,相比BP减小了9.82个百分点,相比ANN减小了5.81个百分点,相比LSTM减小了5.40个百分点,相比LSTM-SVR减小2.03个百分点,相比CNN-LSTM减小1.00个百分点。
中图分类号: