计算机与现代化 ›› 2024, Vol. 0 ›› Issue (10): 21-26.doi: 10.3969/j.issn.1006-2475.2024.10.004

• 算法设计与分析 • 上一篇    下一篇

基于改进MobileNetV3的视觉SLAM回环检测算法






  

  1. (1.沈阳航空航天大学自动化学院,辽宁 沈阳 110136; 2.沈阳飞机工业(集团)有限公司,辽宁 沈阳 110850)
  • 出版日期:2024-10-29 发布日期:2024-10-30
  • 基金资助:
    辽宁省自然科学基金资助项目(2022JH2/101300283); 辽宁省教育厅科学研究基金资助项目(LJKZZ20220028)

Visual SLAM Loop Closure Detection Algorithm Based on Improved MobileNetV3

  1. (1. School of Automation, Shenyang Aerospace University, Shenyang 110136, China;
    2. Shenyang Aircraft Corporation, Shenyang 110850, China)
  • Online:2024-10-29 Published:2024-10-30

摘要: 针对传统回环检测算法在光照变化、动态物体、视点变化等场景下检测准确率低,从而导致机器人建图误差大的问题,提出一种基于改进MobileNetV3的视觉SLAM回环检测算法。首先,对协调注意力(Coordinate Attention, CA)机制进行改进并融入特征提取网络,提升网络对空间信息的提取,使网络提取的特征更符合回环检测要求。然后,使用自编码器对提取的特征进行降维,并进行相似度计算,判断是否出现回环。在City Centre数据集上的实验结果显示,与传统算法相比,基于改进MobileNetV3的回环检测算法准确度提高了21.8个百分点,速度也大幅度提高。相较于其他方法,该方法能够更好地消除视觉SLAM系统的累积误差,同时具有更高的实时性。

关键词: 回环检测, 深度学习, 协调注意力机制, 自编码器降维, 相似度计算

Abstract: To address the inaccuracies in loop closure detection by traditional algorithms under variable lighting, with dynamic objects, and changing viewpoints, leading to the problem of large error in robot mapping, this paper introduces an algorithm using an enhanced MobileNetV3 for visual SLAM. The work improves the Coordinate Attention mechanism within the feature extraction network, enhancing spatial information extraction to meet loop detection needs. Features are then dimensionally reduced via an autoencoder and assessed for similarity to detect loop closures. Experimental results on the City Centre dataset indicate a 21.8 percentage points increase in detection accuracy and a significant speed improvement compared with traditional methods. This approach also more effectively reduces cumulative errors in visual SLAM systems, ensuring greater real-time performance.

Key words:  , loop closure detection; deep learning; coordinating attention mechanism; autoencoder dimension reduction; similarity calculation

中图分类号: