[1] VASQUEZ M, HAO J K. A “logic-constrained” knapsack formulation and a tabu algorithm for the daily photograph scheduling of an earth observation satellite[J]. Computational Optimization and Applications, 2001,20(2):137-157.
[2] WU C Z, WANG X Y, LIN J. Optimizations in project scheduling:A State-of-art survey[M]// Optimization and Control Methods in Industrial Engineering and Construction. 2014:161-177.
[3] GILMORE P C, GOMORY R E. The theory and computation of knapsack functions[J]. Operations Research, 1966,14(6):1045-1074.〖HJ0.8mm〗
[4] BALEV S, YANEV N, FRVILLE A, et al. A dynamic programming based procedure for the multidimensional 0-1 knapsack problem[J]. European Journal of Operational Research, 2008,186(1):63-76.
[5] SNIEDOVICH M. Dynamic programming algorithms for the knapsack problem[J]. ACM SIGAPL APL Quote Quad, 1994,24(3):18-21.
[6] LI V C, LIANG Y C, CHANG H F. Solving the multidimensional knapsack problems with generalized upper bound constraints by the adaptive memory projection method[J]. Computers & Operations Research, 2012,39(9):2111-2121.
[7] SHIH W. A branch and bound method for the multiconstraint zero-one knapsack problem[J]. Journal of the Operational Research Society, 1979,30(4):369-378.
[8] FRVILLE A, PLATEAU G. The 0-1 bidimensional knapsack problem: Toward an efficient high-level primitive tool[J]. Journal of Heuristics, 1996,2(2):147-167.
[9] 曾智,杨小帆,陈静,等.求解多维0-1背包问题的一种改进的遗传算法[J].计算机科学, 2006(7):220-223.
[10]SHAH S. Genetic Algorithm for the 0/1 Multidimensional Knapsack Problem[J]. arXiv preprint arXiv:1908.08022, 2020.
[11]张芹,宫洪芸. 求解多维0-1背包问题的蚁群算法研究[J]. 软件导刊, 2008(12):49-51.
[12]潘夏福,倪子伟. 基于交换策略的蚁群算法求解多维0-1背包问题[J]. 计算机与现代化, 2008(3):83-85.
[13]汪采萍,胡学钢,王会颖. 基于蚁群算法的多维0-1背包问题的研究[J]. 计算机工程与应用, 2007(30):74-76.
[14]杜海峰,刘若辰,焦李成,等. 求解0-1背包问题的人工免疫抗体修正克隆算法[J]. 控制理论与应用, 2005,22(3):348-352.
[15]王凌,王圣尧,方晨. 一种求解多维背包问题的混合分布估计算法[J]. 控制与决策,2011,26(8):1121-1125.
[16]余娟,冯晓华,贺昱曜. 求解多维背包问题的改进分布估计算法[J]. 计算机仿真, 2014,31(10):286-290.
[17] 杜巍,李树茁,陈煜聪.一种求解多维背包问题的小世界算法[J]. 西安交通大学学报, 2009,43(2):10-14.
[18]贺一,邱玉辉,刘光远,等. 多维背包问题的禁忌搜索求解[J]. 计算机科学, 2006,33(9):169-172.
[19]陈晓峰,姜慧研. 量子禁忌搜索算法的研究[J]. 电子学报, 2013(11):2161-2166.
[20]熊小华,宁爱兵,马良. 基于多交换邻域搜索的多维0/1背包问题竞争决策算法[J]. 系统工程理论与实践, 2010,30(8):1448-1456.
[21]喻学才,张田文. 多维背包问题的一个蚁群优化算法[J]. 计算机学报, 2008,31(5):810-819.
[22]吴虎胜,张凤鸣,战仁军,等. 利用改进的二进制狼群算法求解多维背包问题[J]. 系统工程与电子技术, 2015,37(5):1084-1091.
[23]王丛佼,王锡淮,肖建梅. 具有参数自适应机制的改进离散差分进化算法[J]. 计算机科学, 2014,41(1):279-282.
[24]杨艳,刘生建,周永权. 贪心二进制狮群优化算法求解多维背包问题[J]. 计算机应用, 2020,40(5):1291-1294.
[25]欧阳海滨,高立群,孔祥勇,等. 一种求解0-1背包问题的二进制修正和声搜索算法[J]. 控制与决策, 2014(7):1174-1180.
[26]GEEM Z W, KIM J H, LOGANATHAN G V. A new heuristic optimization algorithm: Harmony search[J]. Simulation, 2001,76(2):60-68.
[27]吴聪聪,赵建立,刘雪静,等. 改进的差分演化算法求解多维背包问题[J]. 计算机工程与应用, 2018,54(11):153-160.
[28]KONG X Y, GAO L Q, OUYANG H B, et al. Solving large-scale multidimensional knapsack problems with a new binary harmony search algorithm[J]. Computers and Operations Research, 2015,63(11):7-22.
|