计算机与现代化 ›› 2024, Vol. 0 ›› Issue (09): 15-19.doi: 10.3969/j.issn.1006-2475.2024.09.003
摘要: 我国许多油田的主力开发区块已逐渐进入高含水期,地下油藏复杂,含水量逐步上升,产油量下降。提高对现阶段油田开发生产规律和开采状况的准确认识,对研究油田生产动态变化规律以及制定油田开发策略具有重要意义。针对油田生产动态变化规律的问题,本文提出一种基于改进时序胶囊预测的油藏动态分析模型。首先,应用双向门控循环单元来捕捉油田数据中的时序特征,提升模型对时序信息的建模能力;其次,用多头注意力深度卷积层捕捉初级时序特征信息,高效地提取序列的长距离依赖关系和复杂特征表示;最后,在动态路由算法中引入注意力机制,让高级胶囊更好地关注重要特征,从而提高信息传递的效率和准确性。为验证本文模型有效性,将油田的时序数据作为输入,通过改进胶囊网络模型输出预测日产油量。将改进的胶囊网络与ResNet、LeNet5等9种模型进行对比。实验结果表明,改进后的胶囊网络的预测精度更高,可达到94.5%。
中图分类号: