[1] SHAPIRA B. Recommender Systems Handbook[M]. Springer, 2011.
[2] JANNACH D, ZANKER M, FELFERNIG A, et al. Recommender Systems: An Introduction[M]. Cambridge University Press, 2010.
[3] XIA F, LIU H F, LEE I, et al. Scientific article recommendation: Exploiting common author relations and historical preferences[J]. IEEE Transactions on Big Data, 2016,2(2):101-112.
[4] 杨武,唐瑞,卢玲. 基于内容的推荐与协同过滤融合的新闻推荐方法[J]. 计算机应用, 2016,36(2):414-418.
[5] LINDEN G, SMITH B, YORK J. Item-to-item collaborative filtering[J]. Internet Computing, 2003,7(1):76-80.
[6] 李玉省. 个性化推荐系统关键技术研究[D]. 北京:北京邮电大学, 2016.
[7] PRIYANKA R D, VIJENDRA S. Systematic evaluation of social recommendation systems: Challenges and future[J]. International Journal of Advanced Computer Science and Applications, 2016,7(4),DOI:10.14569/IJACSA.2016.070420.
[8] 徐增林,盛泳潘,贺丽荣,等. 知识图谱技术综述[J]. 电子科技大学学报, 2016,45(4):589-606.
[9] KETHAVARAPU U P K, SARASWATHI S. Concept based dynamic ontology creation for job recommendation system[J]. Procedia Computer Science, 2016,85:915-921.
[10]漆桂林,高桓,吴天星. 知识图谱研究进展[J]. 情报工程, 2017,3(1):4-25.
[11]ZHANG F Z, YUAN N J, LIAN D F, et al. Collaborative knowledge base embedding for recommender systems[C]// Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016:353-362.
[12]WANG H, WANG N Y, YEUNG D Y. Collaborative deep learning for recommender systems[C]// Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2015:1235-1244.
[13]WANG H W, ZHANG F Z, XIE X, et al. DKN: Deep knowledge-aware network for news recommendation[J]. Machine Learning, 2018,arXiv:1801.08284.
[14]QIAN F L, ZHAO S, TANG J, et al. SoRS: Social recommendation using global rating reputation and local rating similarity[J]. Physica A Statistical Mechanics & Its Applications, 2016,461:61-72.
[15]SHI C, ZHANG Z Q, LUO P, et al. Semantic path based personalized recommendation on weighted heterogeneous information networks[C]// Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. 2015:453-462.
[16]WANG H W, ZHANG F Z, WANG J L, et al. RippleNet: Propagating user preferences on the knowledge graph for recommender system[C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. 2018:417-426.
[17]唐晓波,魏巍. 基于本体的推荐系统研究综述[J]. 图书馆学研究, 2016(18):7-12.
[18]SHI C, HU B B, ZHAO W X, et al. Heterogeneous information network embedding for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2019,31(2):357-370.
[19]FENG Y, QIANG L, SHU W, et al. A dynamic recurrent model for next basket recommendation[C]// International ACM SIGIR Conference on Research & Development in Information Retrieval. 2016:729-732.
[20]ZHU Y, ZHU J X, HOU J, et al. A brand-level ranking system with the customized attention-GRU model[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. 2018:3947-3953.
[21]SUN Y Z, HAN J W, YAN X F, et al. PathSim: Meta path-based Top-K similarity search in heterogeneous information networks[J]. Proceedings of the VLDB Endowment, 2011,4(11):992-1003.
[22]YANG X L, GOBEAWAN L, YEO S Y, et al. Automatic segmentation of left ventricular myocardium by deep convolutional and de-convolutional neural networks[C]// 2016 Computing in Cardiology Conference. 2016:81-84.
[23]朱郁筱,吕琳媛. 推荐系统评价指标综述[J]. 电子科技大学学报, 2012,41(2):163-175.
[24]JAIN A, SINGH P, DHAR J. Multi-objective item evaluation for diverse as well as novel item recommendations[J]. Expert Systems with Applications, 2019,139(4),DOI:10.1016/j.eswa.2019.112857.
|