[1] YIN X Y, WU G Z, WEI J Z, et al. A comprehensive survey on traffic prediction[J]. Signal Processing, 2020,arXiv: 2004.08555.
[2] HAMED M M, AL-MASAEID H R, BANI SAID Z M. Short-term prediction of traffic volume in urban arterials[J]. Journal of Transportation Engineering, 1995,121(3):249-254.
[3] VOORT M V D, DOUGHERTY M, WATSON S. Combining kohonen maps with arima time series models to forecast traffic flow[J]. Transportation Research Part C Emerging Technologies, 1996,4(5):307-318.
[4] LEE S, FAMBRO D. Application of subset autoregressive integrated moving average model for short-term freeway traffic volume forecasting[J]. Transportation Research Record Journal of the Transportation Research Board, 1999,1678(1):179-188.
[5] WILLIMAS B M, HOEL L A. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results[J]. Journal of Transportation Engineering, 2003,129(6):664-672.
[6] MOREIRA-MATIAS L, GAMA J, FERREIRA M, et al. Predicting taxi-passenger demand using streaming data[J]. IEEE Transactions on Intelligent Transportation Systems, 2013,14(3):1393-1402.
[7] LIPPI M, BERTINI M, FRASCONI P. Short-term traffic flow forecasting: An experimental comparison of time-series analysis and supervised learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2013,14(2):871-882.
[8] WAGNER-MUNS I M, GUARDIOLA I G, SAMARANAYKE V A, et al. A functional data analysis approach to traffic volume forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2018,19(3):878-888.
[9] CAI P L, WANG Y P, LU G Q, et al. A spatiotemporal correlative K-nearest neighbor model for short-term trafficmultistep forecasting[J]. Transportation Research Part C: Emerging Technologies, 2016,62:21-34.
[10]EONG Y S, BYON Y J, CASTRO-NETO M M, et al. Supervised weighting-online learning algorithm for short-term traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2013,14(4):1700-1707.
[11]杨刚,王乐,戴丽珍,等. 自适应权重粒子群优化LS-SVM的交通流预测[J]. 控制工程, 2017,24(9):1838-1843.
[12]贺国光,马寿峰,李宇. 基于小波分解与重构的交通流短时预测法[J]. 系统工程理论与实践, 2002,22(9):101-106.
[13]窦慧丽,刘好德,吴志周,等. 基于小波分析和ARIMA模型的交通流预测方法[J]. 同济大学学报(自然科学版), 2009,37(4):486-489.
[14]董军,张勇. 快速路交通流时间序列的多重分形分析[J]. 计算机工程与应用, 2016,52(10):227-230.
[15]HUANG W H, SONG G J, HONG H K, et al. Deep architecture for traffic flow forecasting model with a deep learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2014,15(5):2191-2201.
[16]SUN S M, CHEN J, SUN J. Traffic congestion prediction based on GPS trajectory data[J]. International Journal of Distributed Sensor Networks, 2019,15(5):1550147719847440.
[17]阎嘉琳,向隆刚,吴华意,等. 基于LSTM的城市道路交通速度预测[J]. 地理信息世界, 2019,26(5):79-85.
[18]王体迎,时鹏超,刘蒋琼,等. 基于门限递归单元循环神经网络的交通流预测方法研究[J]. 重庆交通大学学报(自然科学版), 2018,37(11):76-82.
[19]YU B, YIN H T, ZHU Z X. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. 2018:3634-3640.
[20]王劲峰,廖一兰,刘鑫. 空间数据分析教程(第二版)[M]. 北京:科学出版社, 2019:32-33.
[21]KIPF T N, WELLING W. Semi-supervised classification with graph convolutional networks[J]. Machine Learning, 2016,arXiv:1609.02907.
[22]DEFFERRARD M, BRESSON X, VANDERGHEYNST P, et al. Convolutional neural networks on graphs with fast localized spectral filtering[J]. Neural Information Processing Systems, 2016:3844-3852.
[23]SHUMAN D I, NARANG S K, FROSSARD P, et al. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains[J]. IEEE Signal Processing Magazine, 2013,30(3):83-98.
|