Please wait a minute...
主 管:江西省科学技术厅
主 办:江西省计算机学会
江西省计算中心
编辑出版:《计算机与现代化》编辑部
Toggle navigation
首页
期刊介绍
编委会
在线期刊
最新录用
当期目录
过刊浏览
阅读排行
下载排行
引用排行
期刊订阅
常见问题及解答
自荐审稿
联系我们
Email Alert
English
在线办公
作者投稿查稿
专家在线审稿
主编在线审稿
编辑在线办公
投稿要求
更多>>
投稿须知
投稿流程
论文模板
版权转让协议
作者变更申请书
推荐文章
更多>>
友情链接
更多>>
中国知网
万方数据知识服务平台
维普网
中国科学文献服务系统
江西省计算机学会
江西省科学技术厅
新闻出版统计信息管理系统
出版专业技术人员职业资格登记注册管理系统
中国版本图书馆
公众号
访问统计
总访问量
今日访问
在线人数
当期目录
2021年 第0卷 第09期 刊出日期:2021-09-14
上一期
下一期
图像处理
多场景融合的细粒度图像描述生成算法
李欣晔, 张承强, 周雄图, 郭太良, 张永爱
2021, 0(09): 1-6.
摘要
(
363
)
PDF
(1256KB) (
255
)
参考文献
|
相关文章
|
计量指标
针对图像描述生成任务在不同场景下表现不佳的缺点,提出一种融合卷积神经网络和先验知识的多场景注意力图像描述生成算法。该算法通过卷积神经网络生成视觉语义单元,使用命名实体识别对图像场景进行识别和预测,并使用该结果自动调整自注意力机制的关键参数并进行多场景注意力计算,最后将得到的区域编码和语义先验知识插入Transformer文本生成器中指导句子的生成。结果表明,该算法有效解决了生成的描述缺少关键场景信息的问题。在MSCOCO和Flickr30k数据集上对模型进行评估,其中MSCOCO数据集的CIDEr得分达到1.210,优于同类图像描述生成模型。
基于改进VGGNet模型的外来入侵植物叶片识别方法
原忠虎, 王维, 苏宝玲
2021, 0(09): 7-11.
摘要
(
335
)
PDF
(856KB) (
204
)
参考文献
|
相关文章
|
计量指标
针对自然界中不同种类植物的叶片可能存在类间差异小而导致一些边缘轮廓相似的本土植物和外来入侵植物叶片识别错误的问题,提出一种PF-VGGNet模型。常用的VGGNet模型在图像分类上表现优秀,采用顺次连接的结构,可以很好地提取图像的高级语义信息特征,但一些图像浅层的轮廓和纹理特征也对分类起到关键作用。PF-VGGNet模型可以将浅层轮廓和纹理特征与网络深层高级语义信息融合,实现对植物叶片的自动识别。实验结果表明,PF-VGGNet模型对比其它算法在自建的外来入侵植物叶片数据集上取得了较好的识别效果,在训练集和测试集上的准确率分别为99.89%和99.63%。PF-VGGNet可以有效降低因叶片边缘轮廓相近导致识别错误的问题,能够快速识别外来入侵植物叶片,为防治外来植物入侵提供支持。
基于DCN-SERes-YOLOv3的人脸佩戴口罩检测算法
李国进, 荣誉
2021, 0(09): 12-20.
摘要
(
383
)
PDF
(13180KB) (
312
)
参考文献
|
相关文章
|
计量指标
2020年新冠疫情爆发,佩戴口罩是有效抑制疫情反弹的重要措施之一,研究利用机器视觉技术检测人脸是否佩戴口罩有重要的现实意义。本文针对视频图像中人脸佩戴口罩时存在遮挡、检测目标较小、特征信息不明显、目标靠近群体不易识别等问题,提出一种基于DCN-SERes-YOLOv3的人脸佩戴口罩检测算法。首先,采用ResNet50与YOLOv3相结合的方式,将主干网络替换为ResNet50残差网络,为了平衡模型的精度与速度,对残差块中的卷积层改进并加入平均池化层,降低模型的损失与复杂度,提高检测速度;其次,将ResNet50残差网络中第4个残差块的常规卷积替换为DCN可变形卷积,提高模型适应人脸佩戴口罩时发生几何形变的能力;最后,引入SENet通道注意力机制,增强特征信息的表达能力。实验结果表明,本文算法的平均精度值高达95.36%,比传统YOLOv3算法提高了约4.1个百分点,且检测速度提高了11.7 fps,本文算法提高了检测人脸佩戴口罩任务的精度与速度,有较好的应用前景。
主动迁移学习的海上任意方向船只目标检测
苏浩, 丁胜, 章超华,
2021, 0(09): 21-30.
摘要
(
293
)
PDF
(8991KB) (
144
)
参考文献
|
相关文章
|
计量指标
在基于深度学习的遥感图像目标检测任务中,船只目标通常呈现出任意方向排列的特性,而常见的水平框目标检测算法一般不能满足此类场景的应用需求。因此本文在单阶段Anchor-Free目标检测器CenterNet的基础上加入旋转角度预测分支,使其能输出旋转边界框,以用于海上船只目标的检测。同时针对海上船只遥感数据集仅有水平边界框标注,无法直接适用于旋转框目标检测,且人工手动标注旋转框标签成本较高的问题,提出一种主动迁移学习的旋转框标签生成方法。首先,提出一种水平框-旋转框约束筛选算法,通过水平真值边界框来对旋转预测框进行监督约束,筛选出检测精度较高的图像加入训练集,然后通过迭代这一过程筛选出更多的图像,最后通过标签类别匹配,完成对数据集的旋转框自动化标注工作。本文最终对海上船只遥感图像数据集BDCI中约65.59%的图片进行旋转框标注,并手动标注部分未标注的图片作为测试集,将本文方法标注的图片作为训练集进行验证,评估指标AP50达到90.41%,高于其他旋转框检测器,从而表明本文方法的有效性。
电力巡检场景下的红外与可见光图像配准方法
刘晓康, 夏天雷, 吴晨媛, 姜雄彪, 周明玉, 王庆华
2021, 0(09): 31-36.
摘要
(
327
)
PDF
(6212KB) (
133
)
参考文献
|
相关文章
|
计量指标
电力设备故障会导致停电事故,影响电网的安全稳定运行。根据电力设备运行时会产生热量的特点,提出一种电力设备的红外与可见光图像配准方法,便于进行异常发热故障检测。首先通过Sobel边缘检测算子提取电力设备的红外与可见光图像的边缘信息,得到边缘图像;然后通过SuperPoint算法检测2幅边缘图像的特征点并计算描述子,利用SuperGlue算法对特征点进行匹配;最后通过最小二乘法计算仿射变换模型参数,实现电力设备的红外与可见光图像配准。实验结果表明本文方法能够对电力设备的红外与可见光图像进行高精度的配准。
算法分析与设计
融合客观赋权法的社交网络谣言源检测算法
周中月, 张海军, 潘伟民
2021, 0(09): 37-42.
摘要
(
250
)
PDF
(847KB) (
99
)
参考文献
|
相关文章
|
计量指标
目前许多检测方法只是对信息是否为谣言进行判断,对于谣言源的研究工作较少。针对以往研究忽略将节点权值作为一项重要参数应用于谣言源检测的问题,提出一种基于谣言中心性融入客观赋权算法模型,即BEW算法。该模型首先通过熵权算法计算网络节点权值,然后基于SIR模型进行模拟网络传播,同时考虑网节点权值嵌入特征,使用社区模块化聚类算法进行聚类,最终通过MLE算法实现源点预测的目的。在4个真实的网络数据集上进行仿真实验,实验结果表明该算法对于谣言源的识别可以达到较好的效果。
基于分解和向量的多目标鲨鱼优化算法
李宏伟
2021, 0(09): 43-50.
摘要
(
296
)
PDF
(1397KB) (
160
)
参考文献
|
相关文章
|
计量指标
为了提高多目标鲨鱼算法在收敛速度和解集的分布性,提出一种基于分解和向量的多目标鲨鱼优化算法(DVMOSSO)。首先针对基本鲨鱼算法收敛性和多样性难以平衡的问题,通过在精英集采过程中,用参考向量计算角度惩罚距离标量值来平衡目标空间中解的收敛性和多样性。除此之外,针对基本鲨鱼算法在迭代后期易早熟收敛,陷入局部最优的缺陷,采用高斯变异策略重新初始化粒子,同时在精英解集中采用多项式变异来增加种群的多样性。最后,为了验证本文所提算法的有效性,将本文所提的DVMOSSO算法与NSGAII-DS、MOEA/D、MMOPSO、MOSSO和dMOSSO算法在标准测试函数上进行对比实验,实验结果表明本文所提算法具有良好的收敛性和分布性,算法收敛精度更高,寻优能力更强。
算法设计与分析
基于组合优化的Kriging参数估计算法
王红
2021, 0(09): 51-56.
摘要
(
252
)
PDF
(997KB) (
91
)
参考文献
|
相关文章
|
计量指标
在使用常微分方程组描述的数学模型进行参数估计时,本文使用Kriging代理模型完成优化过程。该代理模型通过少量数据点的训练即可部分替代计算费时的原始目标函数优化过程,因此可以节省大量的计算时间。在Kriging代理模型精化过程中,查找新增点的优化算法对参数估计的结果有重要影响。本文针对非线性且具有sloppiness属性的常微分方程组形式的参数估计问题,组合具有二阶动量特征的Adam算法及一阶动量梯度下降算法的各自优势用于搜索模型精化时所需添加的新样例点,从而提高收敛速度及查找质量。通过与其他优化算法相比对,验证了该组合算法的实际有效性。
基于三角剖分算法的BIM模型高精度显示方法
王坭, 王淑营, 史海欧, 袁泉
2021, 0(09): 57-62.
摘要
(
392
)
PDF
(3033KB) (
128
)
参考文献
|
相关文章
|
计量指标
BIM模型在Web前端的渲染问题是BIM技术在实际应用中的重要问题,利用三角面片来加快模型前端渲染效率(模型轻量化)是该问题的解决方案。根据Revit二次开发技术中BIM模型的三角面片网格平均质量系数较低的问题,针对BIM模型轻量化和基于Web端共享的应用需求,提出结合Revit二次开发和Delaunary剖分算法的改进算法。通过在Revit二次开发得到的BIM模型原始点上增加点,使得原始点与增加的点按照B-W算法符合Delaunay准则,生成更为精细的三角面片,同时避免了域外三角形的产生,改进了算法实际应用效果。实验结果表明改进算法得到的三角面片的网格平均质量系数和网格关联质量系数相较于原始算法均有提高。最后设计利用WebGL将BIM模型按照优化算法生成的三角面片的方式进行渲染,实现BIM模型在Web端的渲染,验证该方法的有效性。
一种基于NLP的技术体制符合性审查方法
樊志强, 凌冬怡, 牛婵
2021, 0(09): 63-67.
摘要
(
298
)
PDF
(1195KB) (
106
)
参考文献
|
相关文章
|
计量指标
技术体制符合性审查是信息系统立项时的一个重要环节,是对新立项系统在体系中的定位作用和标准符合性的一个有效评估,也是对项目风险控制的一种重要措施。而目前对于技术体制符合性审查验证通常以人工审查、专家经验判断为主,缺乏有效的技术支撑手段。本文研究以自然语言处理(NLP)为主要技术手段的技术体制审查方法,提出针对技术体制审查的NLP命名实体识别算法,并基于技术体制审查业务和审查算法,实现技术体制审查系统。
人工智能
复杂噪声环境下语音识别研究
张允耀, 黄鹤鸣, 张会云,
2021, 0(09): 68-74.
摘要
(
294
)
PDF
(1507KB) (
241
)
参考文献
|
相关文章
|
计量指标
语音识别是人机交互的重要方式,针对传统语音识别系统对含噪语音识别性能较差、特征选择不恰当的问题,提出一种基于迁移学习的深度自编码器循环神经网络模型。该模型由编码器、解码器以及声学模型组成,其中,声学模型由堆栈双向循环神经网络构成,用于提升识别性能;编码器和解码器均由全连接层构成,用于特征提取。将编码器结构及参数迁移至声学模型进行联合训练,在含噪Google Commands数据集上的实验表明本文模型有效增强了含噪语音的识别性能,并且具有较好的鲁棒性和泛化性。
融合混合域注意力的YOLOv4在船舶检测中的应用
赵玉蓉, 郭会明, 焦函, 章俊伟
2021, 0(09): 75-82.
摘要
(
373
)
PDF
(2297KB) (
314
)
参考文献
|
相关文章
|
计量指标
海上船舶检测在海事监管领域发挥着重要的作用,然而由于海上的复杂环境以及船型的多样性,现有的基于卷积神经网络的方法在船舶检测领域难以同时满足高精度和实时的要求。针对复杂环境下海上船舶实时检测困难的问题,提出一种基于YOLOv4的YOLO-Marine模型,该模型将混合注意力机制引入检测网络的backbone部分,首先使用Mosaic方法对船舶数据进行预处理,然后通过K-Means+〖KG-*3〗+聚类得到初始anchor,并在Darknet上实现模型,用真实船舶数据集对模型进行训练和评估。实验结果表明YOLO-marine与YOLOv4相比,将船舶检测任务的mAP提升了2.1个百分点,在保证实时性的同时有效提高了船舶检测的精度,且在小目标和遮挡目标检测方面效果突出。
降低参数规模的卷积神经网络模型压缩方法
朱雪晨, 陈三林, 蔡刚, 黄志洪
2021, 0(09): 83-89.
摘要
(
388
)
PDF
(1418KB) (
163
)
参考文献
|
相关文章
|
计量指标
针对卷积神经网络模型参数规模越来越大导致难以在计算与存储资源有限的嵌入式设备上大规模部署的问题,提出一种降低参数规模的卷积神经网络模型压缩方法。通过分析发现,卷积层参数量与输入输出特征图数量以及卷积核大小有关,而全连接层参数数量众多且难以大幅减少。通过分组卷积减少输入输出特征图数量,通过卷积拆分减小卷积核大小,同时采用全局平均池化层代替全连接层的方法来解决全连接层参数数量众多的问题。将上述方法应用于LeNet5和AlexNet进行实验,实验结果表明通过使用组合压缩方法对LeNet5模型进行最大压缩后,参数规模可减少97%,识别准确率降低了不到2个百分点,而压缩后的AlexNet模型参数规模可减少95%,识别准确率提高了6.72个百分点,在保证卷积神经网络精度的前提下,可大幅减少模型的参数量。
基于知识图谱和Bi-LSTM的推荐算法
王钰蓥, 王勇
2021, 0(09): 90-98.
摘要
(
520
)
PDF
(1255KB) (
223
)
参考文献
|
相关文章
|
计量指标
目前现有基于模型的推荐算法多是将评分数据输入到深度学习模型中进行训练,得出推荐结果。其缺陷在于无法对预测结果进行可解释性分析。除此之外,无法有效地解决算法的冷启动问题。因此,本文提出一种基于知识图谱和Bi-LSTM的推荐算法,来有效解决算法的可解释性和冷启动问题。首先将获取到的数据集进行预处理,生成预编码向量,根据数据集结点的连接性,构建专业领域知识图谱。其次利用知识图谱的元路径提取技术获取到多条用户-物品路径信息,将其输入到Bi-LSTM中,在路径经过的各结点处加入一层注意力机制,目的是为了模型能够有效地获取到较远结点的信息。最后将多条路径的训练结果输入到平均池化层中,用以区分不同路径的重要程度,利用交叉熵损失函数对模型进行训练,从而得出预测结果。实验结果表明,与传统基于循环神经网络模型的推荐算法相比,该算法可有效地提升算法的可解释性以及预测准确性,并缓解算法的冷启动问题。
数据库与数据挖掘
基于图卷积网络的短时交通速度预测
王增光, 王海起, 陈海波
2021, 0(09): 99-105.
摘要
(
261
)
PDF
(2722KB) (
189
)
参考文献
|
相关文章
|
计量指标
交通预测是构建智能交通系统的重要技术,实时准确的交通预测有利于规划路线,提高出行效率。为提高交通速度预测精度,提出一种基于图卷积网络的短时交通速度预测模型。首先对交通速度数据进行时空特征分析,然后结合数据空间特性构造可学习的邻接矩阵来建立图卷积网络,同时考虑到交通数据的时间特性,因此在图卷积的基础上又添加了长短期记忆网络和注意力机制来共同构建预测模型。实验结果表明由于同时考虑了交通速度数据的时空特性,本文模型均方根误差、平均绝对误差和平均绝对百分比误差均小于传统模型和单个模型,验证了提出的模型预测精确度更高。
基于深度学习的教材德目分类方法
郭书武, 陈军华
2021, 0(09): 106-112.
摘要
(
259
)
PDF
(1731KB) (
156
)
参考文献
|
相关文章
|
计量指标
德目教育是个人发展的基石,也是学校的重要职责之一,而教材作为进行德目教育的重要载体,德目指标自然也就成为修订教材的重要标准之一。利用深度学习来实现教材德目指标的自动分类具有更高的效率和可靠性,但是教材文本数据集具有文本信息丰富、特征表现不明显、样本分布不均衡等特点,针对这些问题,结合一种新颖的数据增强方法,并根据词向量对分类结果的贡献度,通过注意力机制计算得到其注意力矩阵,然后结合词向量矩阵一同输入到模型中去,从而提出一种结合注意力机制的文本分类模型IoMET_A,利用IoMET_A对上海市中小学教材文本进行深度学习。实验结果表明,与原始的IoMET文本分类器相比,IoMET_A有效提升了评测效果。
S2R2:基于相关性与冗余性分析的半监督特征选择
张东方, 陈海燕, 袁立罡
2021, 0(09): 113-120.
摘要
(
282
)
PDF
(1177KB) (
110
)
参考文献
|
相关文章
|
计量指标
特征选择是模式识别与数据挖掘的关键问题之一,它可以移除数据集中的冗余和不相关特征以提升学习性能。基于最大相关最小冗余准则,提出一种新的基于相关性与冗余性分析的半监督特征选择方法(S2R2),S2R2方法独立于任何分类学习算法。该方法首先对无监督相关度信息度量进行分析与扩充,然后结合信息增益,设计一种半监督特征相关性与冗余性度量,可以有效识别与移除不相关和冗余特征,最后采用增量搜索技术贪婪地构建特征子集,避免搜索指数级大小的解空间,提高算法的运行效率。本文还提出S2R2方法的快速过滤版本,FS2R2,以更好地应对大规模特征选择问题。多个标准数据集上的实验结果表明了所提方法的有效性和优越性。
智慧农业中时序数据组合预测模型
陈晓雷, 王星星, 申浩阳
2021, 0(09): 121-126.
摘要
(
335
)
PDF
(1340KB) (
122
)
参考文献
|
相关文章
|
计量指标
智慧农业是实现农业精准化的技术解决方案,智慧农业系统可以实时监测植物生长的各类环境参数,并可以应用相应的预测模型来模拟农作物生长环境的变化趋势,为科学决策提供依据。近年来有很多学者提出了时间序列的预测模型算法,在预测稳定性方面取得了不错的效果。为了进一步提升时间序列的预测精度,提出一种基于差分整合移动平均自回归模型和小波神经网络的组合预测模型。该组合模型结合2个单项模型优点,用差分整合移动平均自回归模型来拟合序列的线性部分,用小波神经网络来校正其残差,使其拟合曲线更接近于实际值,采用温室内的历史温度数据来验证该组合模型的精确度,最后将组合模型与传统预测模型的预测结果进行对比。结果表明,该组合模型用于温室温度预测的精确度更高,拟合效果更好,相比于传统模型预测算法计算效能提高了20%左右。