[1] 刘佳颖. 基于模型融合的空气质量预测研究[D]. 兰州:兰州大学, 2020.
[2] MENA-OREJA J, GOZALVEZ J. A comprehensive evaluation of deep learning-based techniques for traffic prediction[J]. IEEE Access, 2020,8:91188-91212.
[3] ZHENG J H, HUANG M F. Traffic flow forecast through time series analysis based on deep learning[J]. IEEE Access, 2020,8:82562-82570.
[4] 詹玉广. 大型客运站人流量在线预测模型研究[J]. 国外电子测量技术, 2020,39(11):94-97.
[5] SAAD M, CHAUDHARY M, KARRAY F, et al. Machine learning based approaches for imputation in time series data and their impact on forecasting[C]// 2020 IEEE International Conference on Systems, Man, and Cybernetics. 2020:2621-2627.
[6] AL-MUSAYLH M S, DEO R C, ADAMOWSKI J F, et al. Short-term electricity demand forecasting with MARS, SVR and ARIMA models using aggregated demand data in Queensland, Australia[J]. Advanced Engineering Informatics, 2018,35:1-16.
[7] DE OLIVEIRA E M, OLIVEIRA F L C. Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods[J]. Energy, 2018,144:776-788.
[8] HAMAMI F, DAHLAN I A. Univariate time series data forecasting of air pollution using LSTM neural network[C]// 2020 International Conference on Advancement in Data Science, E-learning and Information Systems. 2020:1-5.
[9] SHEN Z P, ZHANG Y M, LU J W, et al. A novel time series forecasting model with deep learning[J]. Neurocomputing, 2020,396:302-313.
[10]赵明珠,王丹,方杰,等. 基于LSTM神经网络的地铁车站温度预测[J]. 北京交通大学学报, 2020,44(4):94-101.
[11]ADEYINKA D A, MUHAJARINE N. Time series prediction of under-five mortality rates for Nigeria: Comparative analysis of artificial neural networks, holt-winters exponential smoothing and autoregressive integrated moving average models[J]. BMC Medical Research Methodology, 2020,20(1):292.
[12]BALLI S. Data analysis of Covid-19 pandemic and short-term cumulative case forecasting using machine learning time series methods[J]. Chaos, Solitons & Fractals, 2021,142:110512.
[13]张鹏. 改进的ARIMA-GM-SVR组合预测模型及应用[J]. 统计与决策, 2019,35(13):82-84.
[14]李存祖. 基于ARIMA-BP-SVM模型的PM2.5浓度混合预测[D]. 兰州:兰州大学, 2020.
[15]李鹏飞,王青青,曹青. 基于ARIMA-Kalman滤波混合算法的预测模型[J]. 统计与决策, 2020,36(15):35-38.
[16]张冬雪. 基于LSTM和ARIMA的风速时间序列预测研究[D]. 兰州:兰州大学, 2020.
[17]田东,韦鑫化,王悦,等. 基于MA-ARIMA-GASVR的食用菌温室温度预测[J]. 农业工程学报, 2020,36(3):190-197.
[18]BUDI C S P S, MUSTIKA I W, WAHYUNGGORO O, et al. Improved time series prediction using LSTM neural network for smart agriculture application[C]// 2019 5th International Conference on Science and Technology. 2019:1-4.
[19]TORMOZOV V S, ZOLKIN A L, VASILENKO K A. Optimization of neural network parameters based on a genetic algorithm for prediction of time series[C]// 2020 International Multi-Conference on Industrial Engineering and Modern Technologies. 2020:1-4.
[20]USTUNDAG B B, KULAGLIC A. High-performance time series prediction with predictive error compensated wavelet neural networks[J]. IEEE Access,2020,8:210532-210541.
[21]夏侯如超. 基于边缘计算的室内空气质量监测方法及其预测模型研究[D]. 上海:华东理工大学, 2019.
[22]贾茹宾,高金峰. 基于ARIMA模型的变压器油中溶解气体含量时间序列预测方法[J]. 郑州大学学报(工学版), 2020,41(2):67-72.
[23]BARBOSA M R, LOPES A M. Temperature time series: Pattern analysis and forecasting[C]// 2017 4th Experiment@International Conference(exp.at17). 2017:226-231.
|