[1] |
YU H F, RAO N, DHILLON I S. Temporal regularized matrix factorization for high dimensional time series prediction[C]// The 29th Conference on Information Processing Systems. 2016:846-855.
|
[2] |
FALOUTSOS C, GASTHAUS J, JANUSCHOWSKI T, et al. Forecasting big time series: Old and new[J]. Proceedings of the VLDB Endowment, 2018,11(12):2102-2105.
|
[3] |
JING P G, SU Y T, JIN X, et al. High-order temporal correlation model learning for time series prediction[J]. IEEE Transactions on Cybernetics, 2018,49(6):2385-2397.
|
[4] |
SHI Q Q, YIN J M, CAI J J, et al. Block Hankel tensor ARIMA for multiple short time series forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020,34(4):5758-5766.
|
[5] |
MA X Y, ZHANG L, XU L, et al. Large-scale user visits understanding and forecasting with deep spatial-temporal tensor factorization framework[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019:2403-2411.
|
[6] |
ROGERS M, LI L, RUSSELL S J. Multilinear dynamical systems for tensor time series[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. 2013:2634-2642.
|
[7] |
HERATH H M W B. Tensor regression and tensor time series analyses for high dimensional data[J]. 2019.
|
[8] |
别金金. 张量分解在高维时间序列中的应用[D]. 上海:华东师范大学, 2021.
|
[9] |
LIU J, MUSIALSKI P, WONKA P, et al. Tensor completion for estimating missing values in visual data[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35(1):208-220.
|
[10] |
GANDY S, RECHT B, YAMADA I, et al. Tensor completion and low-n-rank tensor recovery via convex optimization[J]. Inverse Problems,27(2):025010-1-025010-19.
|
[11] |
刘园园. 快速低秩矩阵和张量恢复的算法研究[D]. 西安:西安电子科技大学, 2013.
|
[12] |
刘慧梅. 改进的低秩张量补全算法及应用[D]. 西安:西安建筑科技大学, 2016.
|
[13] |
SONG Q Q, GE H C, CAVERLEE J, et al. Tensor completion algorithms in big data analytics[J]. ACM Transactions on Knowledge Discovery from Data, 2019,13(1):1-48.
|
[14] |
ZHOU P, LU C Y, LIN Z C, et al. Tensor factorization for low-rank tensor completion[J]. IEEE Transactions on Image Processing, 2018,27(3):1152-1163.
|
[15] |
CHEN X Y, SUN L J. Low-rank autoregressive tensor completion for multivariate time series forecasting[J]. arXiv preprint arXiv:2006.10436, 2020.
|
[16] |
CHEN X Y, SUN L J. Bayesian temporal factorization for multidimensional time series prediction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021,44(9):4659-4673.
|
[17] |
LIU G C, ZHANG W. Recovery of future data via convolution nuclear norm minimization[J]. arXiv preprint arXiv:1909.03889, 2019.
|
[18] |
朱浩华. 基于张量补全的降雨预测[J]. 计算机应用与软件, 2022,39(4):218-222.
|
[19] |
张贤达. 矩阵分析与应用[M]. 2版. 北京:清华大学出版社, 2013:563-592.
|
[20] |
KOLDA T G, BADER B W. Tensor decompositions and applications[J]. SIAM Review, 2009,51(3):455-500.
|
[21] |
蔡瑞胸. 金融数据分析导论:基于R语言[M]. 北京: 机械工业出版社, 2013:28-52.
|
[22] |
CANDES E J, RECHT B. Exact matrix completion via convex optimization[J]. Foundations of Computati-onal Mathematics, 2009,9(6):717-772.
|
[23] |
RECHT B, FAZEL M, PARRILO P A. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization[J]. SIAM Review, 2010,52(3):471-501.
|
[24] |
GABAY D,MERCIER B. A dual algorithm for the solution of nonlinear variational problems via finite element approximation[J]. Computers & Mathematics with Applications, 1976,2( 1):17-40.
|
[25] |
COHN H, KLEINBERG R, SZEGEDY B, et al. Group-theoretic algorithms for matrix multiplication[C]// The 46th Annual IEEE Symposium on Foundations of Computer Science. 2005:379-388.
|
[26] |
YU B, YIN H T, ZHU Z X, et al. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting[J]. arXiv preprint arXiv:1709.04875, 2017.
|
[27] |
PEÑA D, TSAY R S. Statistical Learning for Big Dependent Data[M]. USA: John Wiley and Sons, 2021:359-414.
|
[28] |
GENE H G, CHARLES F V L. Matrix Computations[M]. 4ed .USA: The Johns Hopkins University Press, 2013:707-744.
|