计算机与现代化 ›› 2023, Vol. 0 ›› Issue (09): 51-58.doi: 10.3969/j.issn.1006-2475.2023.09.008

• 数据库与数据挖掘 • 上一篇    下一篇

用于具有缺失值的时间序列预测的张量自回归补全算法

  

  1. (1.上海对外经贸大学统计与信息学院,上海 201620; 2.上海市大数据中心,上海 200072)
  • 出版日期:2023-09-28 发布日期:2023-10-10
  • 作者简介:刘瑞雪(2000—),女,河北衡水人,硕士研究生,研究方向:商务数据挖掘,E-mail: liuruixue0112@yeah.net; 通信作者:李文(1970—),女,山东淄博人,副教授,博士,研究方向:时间序列分析和经济统计学,E-mail: liwen@suibe.edu.cn; 刘芳(1997—),女,山东济宁人,硕士研究生,研究方向:时间序列分析,E-mail: 18864803321@163.com; 杜守国(1971—),男,山东聊城人,教授级高级工程师,硕士,研究方向:时间序列分析,E-mail: dushouguo@rsj.sh.gov.cn。
  • 基金资助:
    国家自然科学基金资助项目(12171310); 上海对外经贸大学研究生科研创新培育项目(2022-030800-03)

Prediction of Time Series with Missing Value Based on Tensor Autoregressive Completion

  1. (1. School of Statistics and Information, Shanghai University of International Business and Economics, Shanghai 201620, China;
    2. Shanghai Municipal Big Data Center, Shanghai 200072, China)
  • Online:2023-09-28 Published:2023-10-10

摘要: 为解决具有缺失值的高维时间序列的预测问题,提出一种张量自回归补全算法。在高精度低秩张量补全算法(HaLRTC)的基础上,加入张量自回归范数,通过充分利用高维时间序列所有维度的信息,对张量时间序列缺失数据进行补全。其中张量核范数捕捉时间序列的长期趋势,张量自回归范数捕捉时间序列的短期趋势,利用自回归模型的高阶形式,对补全后的高维时间序列进行预测。为了验证算法的有效性,提出基于Tucker分解的核心自回归张量补全算法(CCAR)、核心张量自回归补全算法(CTAR)、张量核心自回归补全算法(TCAR)用于消融实验。通过消融实验以及与其他现有方法的对比实验结果表明,在数据缺失比例较小的情况下,本文所提出的算法具有明显的预测优势。

关键词: 时间序列预测, 张量分解, 张量补全, 核范数, 自回归模型

Abstract: To solve the prediction problem of high-dimensional time series with missing values, a tensor autoregressive completion algorithm is proposed. Based on the high-precision low-rank tensor completion algorithm (HaLRTC), the tensor autoregressive norm is added, and the missing data of the tensor time series is completed by making full use of the information of all dimensions of the high-dimensional time series, in which the tensor kernel norm captures the long-term trend of the time series, and the tensor autoregressive norm captures the short-term trend of the time series. Using high-order form of the autoregressive model, the completed high-dimensional time series is predicted. To verify the effectiveness of the algorithm, the core autoregressive tensor completion (CCAR), the core tensor autoregressive completion (CTAR), and the tensor core autoregressive completion (TCAR) based on Tucker decomposition are proposed for ablation experiment. The results of ablation experiments and comparison experiments with other existing methods show that the proposed algorithm has obvious prediction advantages in the case of small proportion of missing data.

Key words:  , time series forecasting; tensor decomposition; tensor completion; nuclear norm; autoregressive model

中图分类号: