计算机与现代化 ›› 2023, Vol. 0 ›› Issue (07): 36-42.doi: 10.3969/j.issn.1006-2475.2023.07.007

• 人工智能 • 上一篇    下一篇

基于ICEEMDAN-BiLSTM-ARIMA组合模型的桥梁健康监测数据预测模型#br#

  

  1. (1.四川雅康高速公路有限责任公司,四川 成都 610000; 2.西南交通大学信息科学与技术学院,四川 成都 611756;
    3.西南交通大学综合交通大数据应用技术国家工程实验室,四川 成都 611756)
  • 出版日期:2023-07-26 发布日期:2023-07-27
  • 作者简介:李世佳(1984—),男,湖北仙桃人,高级工程师,学士,研究方向:高速公路建设管理,E-mail: 120250151@qq.com; 通信作者:侯丽娟(1998—),女,四川南充人,硕士研究生,研究方向:大数据分析与处理,E-mail: 1466926982@qq.com; 汤斌(1989—),男,四川资阳人,工程师,研究方向:高速公路建设管理,E-mail: 980443622@qq.com; 杨柳(1978—),女,四川成都人,高级实验师,博士,研究方向:多址接入,无线资源管理,数字媒体技术,E-mail: yangliu@swjtu.cn; 刘恒(1983—),男,湖南怀化人,博士,研究方向:下一代无线通信技术,工程信息化,人工智能技术的工程化应用,软件开发与测试,E-mail:hengliu@swjtu.cn。
  • 基金资助:
    四川省科技创新基地(平台)和人才计划项目(2022JDR0356); 四川省科技计划项目(软科学项目)(2021JDR0101);成都市科技项目(2019-YF05-02657-SN); 国家自然科学基金委重点国际合作研究项目(6202010600)

Bridge Health Monitoring Data Prediction Model Based on ICEEMDAN-BiLSTM-ARIMA Combined Model

  1. (1.Sichuan Yakang Expressway Co., Ltd., Chengdu 610000, China; 2. School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China; 3. National Engineering Laboratory of Comprehensive Transportation Big Data Application Technology, Southwest Jiaotong University, Chengdu 611756, China)
  • Online:2023-07-26 Published:2023-07-27

摘要: 针对目前桥梁结构健康监测系统所采集的各个类型的时序数据,鉴于桥梁结构响应及环境给数据所产生的附加影响,为实现桥梁结构安全预警,基于集成算法原理,本文采用目前经验模态分解方法中的改进,研究改进的带有自适应噪声的完备集合经验模式分解(Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise, ICEEMDAN)方法,对桥梁监测应力数据进行分解,并通过多尺度排列熵算法将分解后的各个分量进行排序并重组,最后结合经典时序分析理论双向长短期记忆网络(Bidirectional Long Short-Term Memory, BiLSTM)与差分自回归移动平均模型(Autoregressive Integrated Moving Average Model, ARIMA)对重组后的分量进行预测分析并组合其结果得到最终的预测值。通过对雅康高速大渡河特大桥健康监测系统所采集的应力数据进行验证,结果表明,该方法相比于单一模型有效地提高了预测效果,整体提升约60%~70%。实现对桥梁监测数据的准确预测,为未来桥梁结构的健康状态预估、数字化建设以及安全预警奠定了有力的基础。

关键词: 桥梁, 应力, 健康监测, ICEEMDAN, 组合预测模型

Abstract: Aiming at the various types of time series data collected by the current bridge structural health monitoring system, in view of the bridge structural response and the additional impact of the environment on the data, in order to achieve bridge structural safety early warning, based on the principle of integrated algorithm, this paper adopts ICEEMDAN (Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise)method studied by the improved current empirical modal decomposition method to decompose the bridge monitoring stress data, and uses the multi-scale permutation entropy algorithm to sort and reorganize the decomposed components. Finally, we combine the classical time series analysis theory BiLSTM (Bidirectional Long Short-Term Memory) network with differential ARIMA (Autoregressive Integrated Moving Average Model) to make predictive analysis for the reconstituted component and combine the results to get the final predicted value. By verifying the stress data collected by the health monitoring system of the Dadu River Bridge on the Yakang Expressway, the results show that this method effectively improves the prediction effect compared with the single model, with an overall increase of about 60%~70%. The method achieves accurate prediction of bridge monitoring data and lays a strong foundation for future bridge structure health state prediction, digital construction and safety early warning.

Key words: bridge, stress, health monitoring, ICEEMDAN, combined prediction model

中图分类号: