计算机与现代化 ›› 2023, Vol. 0 ›› Issue (08): 54-59.doi: 10.3969/j.issn.1006-2475.2023.08.009
摘要: 摘要:天然气负荷预测对居民生活、商业发展、工业生产等领域都起着决定性作用,且精确的短期负荷预测可以有效量化天然气负荷预测的不确定性,对于能源系统运行调度避险十分关键。天然气负荷由于受到季节的影响会出现巨峰特征,传统的点预测模型没有考虑到天然气的季节性影响,预测结果的准确性偏低。SARIMA模型可以处理具有季节性波动趋势和随机干扰的时间序列数据。因此,采用 SARIMA模型对天然气负荷进行去日、季、周期性以及一阶差分的处理,捕获时间序列中的线性特征与季节性特征,依据赤池信息准则与网格搜索确定最优参数模型,按比例划分短期区间预测数值。以西安市天然气用量为例,与传统模型对比,结果表明采用SARIMA模型在序列强季节性区间内误差小,具有较高的准确性。
中图分类号: