[1] 张雪坚,张榆,钏涛,等. 基于大数据技术的IT运维数据管理系统构建方法[J]. 电子科技, 2018,31(4):84-86.
[2] 赵文清,沈哲吉,李刚. 基于深度学习的用户异常用电模式检测[J]. 电力自动化设备, 2018,38(9):34-38.
[3] 陈来军,梅生伟,陈颖. 智能电网信息安全及其对电力系统生存性的影响[J]. 控制理论与应用, 2012,29(2):240-244.
[4] 曹晨曦,田友琳,张昱堃,等. 基于统计方法的异常点检测在时间序列数据上的应用[J]. 合肥工业大学学报(自然科学版), 2018,41(9):1284-1288.
[5] 李海林,邬先利. 基于频繁模式发现的时间序列异常检测方法[J]. 计算机应用, 2018,38(11):3204-3210.
[6] 徐东,王岩俊,孟宇龙,等. 基于Isolation Forest改进的数据异常检测方法[J]. 计算机科学, 2018,45(10):155-159.
[7] 王腾,焦学伟,高阳. 一种基于Attention-GRU和iForest的周期性时间序列异常检测算法[J]. 计算机工程与科学, 2019,41(12):2217-2222.
[8] ARYAL S, TING K M, WELLS J R, et a1. Improving iForest with relative mass[C]// Proceedings of the 18th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. 2014:510-521.
[9] YU B, CHEN F, CHENH Y. NPP estimation using random forest and impact feature variable importance analysis[J]. Spatial Science, 2019,64(1):1-20.
[10]LIU F T, TING K M, ZHOU Z H. Isolation-based Anomaly Detection[J]. ACM Transactions on Knowledge Discovery from Data, 2012,6(1):1556-4681.
[11]侯泳旭,段磊,秦江龙,等. 基于Isolation Forest的并行化异常探测设计[J]. 计算机工程与科学, 2017,39(2):236-244.
[12]BREIMAN L. Random forests[J]. Machine Learning, 2001,45(1):5-32.
[13]SUN X B, ZHOU T C, LI G J, et al. An empirical study on real bugs for machine learning programs[C]// 2017 24th Asia-Pacific Software Engineering Conference (APSEC). 2017:348-357.
[14]DIETTERICH T G. Ensemble learning[M]// The Handbook of Brain Theory and Neural Networks. MIT Press, 2002:405-408.
[15]TANG F, ISHWARAN H. Random forest missing data algorithms[J]. Statistical Analysis & Data Mining, 2017,10(6):363-377.
[16]KULKARNI V Y, SINHA P K. Efficient learning of random forest classifier using disjoint partitioning approach[C]// Proceedings of the World Congress on Engineering. 2013:826-830.
[17]OSHIRO T M, PEREZ P S, BARANAUSKAS J A. How many trees in a random forest[C]// Proceedings of the 8th International Conference on Machine Learning and Data Mining in Pattern Recognition. 2012:154-168.
[18]BERNARD S, HEUTTE L, ADAM S. Towards a better understanding of random forests through the study of strength and correlation[C]// International Conference on Emerging Intelligent Computing Technology & Applications. 2009:536-545.
[19]陈禹,毛莺池. 基于随机森林和遗传算法的Ceph参数自动调优[J/OL]. 计算机应用:1-7[2020-02-14]. http://kns.cnki.net/kcms/detail/51.1307.TP.20190929.1407.016.html.
[20]WANG DS. B2C potential customer identification research based on random forest[C]// 第二届信息获取与知识服务国际会议论文集. 2016:250-255.
[21]王余伟,曹东,施书成. 实时操作系统CPU使用率监测的软件容错研究[J]. 计算机工程与科学, 2018,40(8):1337-1343.
[22]李志华,张海涛,孙雅,等. 非数值属性数据异常检测算法[M]. 南昌:江西人民出版社, 2015:7-8,195-197.
[23]王丽娜,董晓梅,郭晓淳,等. 基于数据挖掘的网络数据库入侵检测系统[J]. 东北大学学报(自然科学版), 2003,24(3):225-228. |