计算机与现代化 ›› 2023, Vol. 0 ›› Issue (08): 31-37.doi: 10.3969/j.issn.1006-2475.2023.08.006

• 人工智能 • 上一篇    下一篇

基于DTW-TCN的股票分类及预测研究

  

  1. (1.安徽工业大学商学院,安徽 马鞍山 243000; 2.新疆财经大学统计与数据科学学院,新疆维吾尔自治区 乌鲁木齐 830000)
  • 出版日期:2023-08-30 发布日期:2023-09-13
  • 作者简介:孙子雨(2002—),男,安徽安庆人,本科生,研究方向:金融数据分析,E-mail: 649104219@qq.com; 任燃(2000—),女, 四川乐山人,本科生,研究方向:数据挖掘,E-mail: ghftuyghgjgy@Outlook.com; 魏曦哲(2000—),男,江苏徐州人,本科生,研究方向:数据挖掘,E-mail: huyanluanyuw.work@Outlook.com。
  • 基金资助:
    国家社会科学基金资助项目(21XJY019)

Research on Stock Classification and Forecast Based on DTW-TCN

  1. (1. School of Business, Anhui University of Technology, Maanshan 243000, China;
    2. School of Statistics and Data Science, Xinjiang University of Finance & Economics, Urumqi 830000, China)
  • Online:2023-08-30 Published:2023-09-13

摘要: 摘要:随着社会以及信息技术的发展,金融工具、股票交易呈现出新的形态,其中,由于金融数据量呈指数级增长,股票类数据难以分类与预测,因此在高频交易中股票趋势预测尤为重要。为提高高频交易中股票趋势预测的精准度,构建基于动态时间规整(DTW)聚类分析的时间卷积神经网络(TCN)模型用于股票分类和预测研究。在本文模型(DTW-TCN)中,采用开盘价、最高价、最低价、收盘价、成交量、成交额作为股票特征变量。为避免量级影响,首先,对特征向量标准化处理,随后利用动态时间规整对于时间序列相似性的衡量作用,作为股票的分类标准;然后,通过TCN卷积神经网络提取类别共同特征进行网络训练,进一步,将类别中的普遍性行业股票利用训练好的卷积神经网络进行股票趋势预测;最终,得到所属类别股票每分钟开盘价与收盘价走势,并与实际趋势相对比进行误差分析。以19只行业代表性股票分钟级数据为样本进行实验,结果表明,本文模型能有效地分类趋势趋同的股票,并且实现在分钟级别高频交易中准确进行趋势预测,对比传统时间序列模型和LSTM网络模型具有更大时间特性优势。未来DTW-TCN分类预测模型可以用于更多大数据信息分类和预测实例中。

关键词: 关键词:时间序列预测, 动态时间规整, 时间卷积神经网络, 高频交易, 聚类分析

Abstract: Abstract: With the development of society and information technology, financial instruments and stock transactions have taken on a new form, namely, the number of financial data increases. Therefore, stock trend prediction is particularly important in high-frequency trading. Stock trend prediction in high-frequency trading is particularly important to improve the accuracy of stock trend prediction in high-frequency trading. A temporal convolutional network (TCN) model based on dynamic time warping (DTW) clustering analysis is proposed. In the model, the opening price, the highest price, the lowest price, the closing price, the trading volume, and the trading volume are used as the stock characteristic variables. In order to avoid the influence of magnitude, the feature vector is standardized first, and then the stock is classified by using the dynamic time warping to measure the similarity of time series, Then, temporal convolutional network (TCN) extracts the common characteristics of the categories to predict the opening and closing price trends of the stocks of the categories, and compares them with the actual trends. The experiment is conducted with the minute-level data of 19 industry universal stocks. Compared with traditional time series model and LSTM network model, it has greater time characteristics. The results show that the model can effectively classify the stocks with the same trend into the same category, and achieve accurate trend prediction in the minute-level high-frequency trading.

Key words: Key words: time series forecasting, dynamic time warping, Temporal convolutional networks, high-frequency trading, cluster analysis

中图分类号: