计算机与现代化 ›› 2021, Vol. 0 ›› Issue (09): 106-112.

• 数据库与数据挖掘 • 上一篇    下一篇

基于深度学习的教材德目分类方法

  

  1. (上海师范大学信息与机电工程学院,上海201418)
  • 出版日期:2021-09-14 发布日期:2021-09-14
  • 作者简介:郭书武(1997—),男,河南新乡人,硕士研究生,研究方向:数据处理与自然语言处理,E-mail: 18379678768@163.com; 陈军华(1968—),男,上海人,副教授,硕士,研究方向:数据信息处理技术及数据库信息系统。
  • 基金资助:
    国家社会科学基金资助项目(13JZD046)

Textbook Classification Method of Index of Moral Education Based on Deep Learning

  1. (College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 201418, China)
  • Online:2021-09-14 Published:2021-09-14

摘要: 德目教育是个人发展的基石,也是学校的重要职责之一,而教材作为进行德目教育的重要载体,德目指标自然也就成为修订教材的重要标准之一。利用深度学习来实现教材德目指标的自动分类具有更高的效率和可靠性,但是教材文本数据集具有文本信息丰富、特征表现不明显、样本分布不均衡等特点,针对这些问题,结合一种新颖的数据增强方法,并根据词向量对分类结果的贡献度,通过注意力机制计算得到其注意力矩阵,然后结合词向量矩阵一同输入到模型中去,从而提出一种结合注意力机制的文本分类模型IoMET_A,利用IoMET_A对上海市中小学教材文本进行深度学习。实验结果表明,与原始的IoMET文本分类器相比,IoMET_A有效提升了评测效果。

关键词: 德目指标, 中文文本分类, 注意力机制, 卷积神经网络, IoMET_A

Abstract: Moral education is the cornerstone of personal development and one of the important responsibilities of schools. As an important carrier of moral education, the index of moral education has naturally become one of the important standards for textbook revision. It is more efficient and reliable to use deep learning to realize automatic classification of textbook titles. However, the text data set of the textbook has the characteristics of abundant text information, unobtrusion of features and unbalanced sample distribution. To solve these problems, a new data enhancement method is combined. According to the contribution of text words vector to the classification results, the attention matrix is calculated by the attention mechanism, and then the word vector matrix is input into the model together, a text classification model IoMET_A bonded with attention mechanism is proposed. IoMET_A is used to study the textbooks of primary and secondary schools in Shanghai. The experimental results show that compared with the original IoMET text classifier, IoMET_A effectively improves the evaluation effect.

Key words: index of moral education, Chinese text classification, attention mechanism, convolutional neural network, IoMET_A