[1] 王清和,曹兵,朱鹏飞,等. 基于自判别循环生成对抗网络的人脸图像翻译[J]. 中国科学:信息科学, 2022,52(8):1447-1462.
[2] 员一南,曹林,康峻,等. 基于特征滤波的生成对抗网络素描人脸合成方法[J].计算机应用与软件, 2025,42(2):241-247.
[3] 翁丽芬,李晨阳,许华荣. 基于GAN的分步合成人脸素描生成算法[J]. 计算机辅助设计与图形学学报, 2023,35(9):1363-1373.
[4] GAO X B, ZHONG J J, LI J, et al. Face sketch synthesis algorithm based on E-HMM and selective ensemble[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2008,18(4):487-496.
[5] WANG X G, TANG X O. Face photo-sketch synthesis and recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008,31(11):1955-1967.
[6] CHANG L, ZHOU M, HAN Y J, et al. Face sketch synthesis via sparse representation[C]// Proceedings of the 2010 20th IEEE International Conference on Pattern Recognition. IEEE, 2010:2146-2149.
[7] GAO X B, WANG N N, TAO D C, et al. Face sketch-photo synthesis and retrieval using sparse representation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2012,22(8):1213-1226.
[8] LIU Q S, TANG X O, JIN H J, et al. A nonlinear approach for face sketch synthesis and recognition[C]// Proceedings of the 2005 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2005:1005-1010.
[9] 吉娜烨,柴秀娟,山世光,等. 局部回归模型驱动的人脸素描自动生成[J]. 计算机辅助设计与图形学学报, 2014,26(12):2232-2243.
[10] PENG C L, GAO X B, WANG N N, et al. Superpixel-based face sketch-photo synthesis[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2015,27(2):288-299.
[11] WAN W G, YANG Y, LEE H J. Generative adversarial learning for detail-preserving face sketch synthesis[J]. Neurocomputing, 2021,438:107-121.
[12] QUE Y, XIONG L, WAN W G, et al. Denoising diffusion probabilistic model for face sketch-to-photo synthesis[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024,34(10):10424-10436.
[13] ZHANG L L, LIN L, WU X, et al. End-to-end photo-sketch generation via fully convolutional representation learning[C]// Proceedings of the 5th ACM on International Conference on Multimedia Retrieval. ACM, 2015:627-634.
[14] ZHANG D Y, LIN L, CHEN T S, et al. Content-adaptive sketch portrait generation by decompositional representation learning[J]. IEEE Transactions on Image Processing, 2016,26(1):328-339.
[15] MIRZA M, OSINDERO S. Conditional generative adversarial nets[J]. arXiv preprint arXiv:1411.1784, 2014.
[16] RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv preprint arXiv: 1511.06434, 2015.
[17] ISOLA P, ZHU J Y, ZHOU T H, et al. Image-to-image translation with conditional adversarial networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2017:1125-1134.
[18] 葛延良,孙笑笑,王冬梅,等. 基于循环生成对抗网络的人脸素描合成网络设计[J]. 吉林大学学报(信息科学版), 2023, 41(1):76-83.
[19] CHEN C F, LIU W, TAN X, et al. Semi-supervised Cycle-GAN for face photo-sketch translation in the wild[J]. Computer Vision and Image Understanding, 2023,235. DOI: 10.1016/j.cviu.2023.103775.
[20] MELNIK A, MIASAYEDZENKAU M, MAKARAVETS D, et al. Face generation and editing with StyleGAN: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024,46(5):3557-3576.
[21] GUO M H, XU T X, LIU J J, et al. Attention mechanisms in computer vision: A survey[J]. Computational Visual Media, 2022,8(3):331-368.
[22] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2018:7132-7141.
[23] LI X, WANG W H, HU X L, et al. Selective kernel networks[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2019:510-519.
[24] TSENG C H, LEE S J, FENG J N, et al. UPANets: Learning from the universal pixel attention networks[J]. Entropy, 2022,24(9). DOI: 10.3390/e24091243.
[25] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. ACM, 2017:6000-6010.
[26] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. IEEE, 2017:2223-2232.
[27] FU H A, GONG M M, WANG C H, et al. Geometry-consistent generative adversarial networks for one-sided unsupervised domain mapping[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2019:2427-2436.
[28] PARK T, EFROS A A, ZHANG R, et al. Contrastive learning for unpaired image-to-image translation[C]// Proceedings of the 16th European Conference on Computer Vision. Springer, 2020:319-345.
[29] ZHAO Y H, WU R H, DONG H. Unpaired image-to-image translation using adversarial consistency loss[C]// Proceedings of the 16th European Conference on Computer Vision. Springer, 2020:800-815.
[30] HAN J L, SHOEIBY M, PETERSSON L, et al. Dual contrastive learning for unsupervised image-to-image translation[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2021:746-755.
[31] GOU Y, LI M, SONG Y, et al. Multi-feature contrastive learning for unpaired image-to-image translation[J]. Complex & Intelligent Systems, 2023,9(4):4111-4122.
[32] TORBUNOV D, HUANG Y, YU H W, et al. UVCGAN: Unet vision transformer cycle-consistent GAN for unpaired image-to-image translation[C]// Proceedings of the IEEE/ CVF Winter Conference on Applications of Computer Vision. IEEE, 2023:702-712.
[33] ZHAO C, CAI W L, YUAN Z. Spectral normalization and dual contrastive regularization for image-to-image translation[J]. The Visual Computer, 2025,41(1):129-140.
[34] GRASSI M, FAUNDEZ-ZANUY M. Face recognition experiments on the AR database[J]. NATO Security Through Science Series, E: Human and Societal Dynamics, 2007,18:275-284.
[35] MESSER K, MATAS J, KITTLER J, et al. XM2VTSDB: The extended M2VTS database[C]// Proceedings of the 2nd International Conference on Audio and Video-Based Biometric Person Authentication. Springer,1999,964:965-966.
[36] TANCHENKO A. Visual-PSNR measure of image quality[J]. Journal of Visual Communication and Image Representation, 2014,25(5):874-878.
[37] HORE A, ZIOU D. Image quality metrics: PSNR vs. SSIM[C]// Proceedings of the 2010 20th IEEE International Conference on Pattern Recognition. IEEE, 2010:2366-2369.
[38] ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2018:586-595.
[39] ZHANG L, ZHANG L, MOU X Q, et al. FSIM: A feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011,20(8):2378-2386.
[40] HEUSEL M, RAMSAUER H, UNTERTHINER T, et al. GANs trained by a two time-scale update rule converge to a nash equilibrium[J]. arXiv preprint arXiv:1706.08500, 2017.
|