计算机与现代化 ›› 2025, Vol. 0 ›› Issue (11): 16-31.doi: 10.3969/j.issn.1006-2475.2025.11.003

• 人工智能 • 上一篇    下一篇

多策略蜣螂优化算法优化无人机航迹规划问题

  


  1. (上海理工大学理学院,上海 200093)
  • 出版日期:2025-11-20 发布日期:2025-11-20
  • 作者简介: 作者简介:杨会敏(1999—),女,安徽阜阳人,硕士研究生,研究方向:人工智能,E-mail: 2415881276@qq.com; 通信作者:杨进(1978—),女,江苏无锡人,讲师,硕士生导师,博士,研究方向:智能优化,图论与组合优化,E-mail: yangjin.0903@163.com; 孙雨婕(1999—),女,上海杨浦人,硕士研究生,研究方向:人工智能,E-mail: sun2010hu@163.com。
  • 基金资助:
    基金项目:国家自然科学基金资助项目(12071293)
       

Multi-strategy Dung Beetle Optimization Algorithm for Optimizing UAV Trajectory Planning Problem


  1. (College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China)
  • Online:2025-11-20 Published:2025-11-20

摘要:
摘要:无人机航迹规划是无人机执行复杂任务时面临的重要挑战,涉及在动态、不确定环境中寻找最优路径,且无人机航迹规划中的全局搜索和局部开发问题一直都是研究的重点,本文基于此设计一种结合蜣螂优化算法(DBO)改进的多策略混合优化算法(MSIDBO)。为了提高算法的全局搜索和局部开发能力,本文采用“拉丁超立方”抽样生成初始种群,自适应变螺旋策略调整搜索方向,并结合最优领域扰动策略以改善整体收敛性能。为避免算法陷入局部最优,加入布朗运动与Levy飞行策略动态调整算法开发。实验结果表明,本文提出的MSIDBO算法在保证路径长度、平滑度和避障性能的基础上,显著提高了航迹规划的效率与精度。该算法在不确定性与动态环境中展现了优越的全局搜索能力和局部优化能力,适用于多种复杂任务场景。


关键词: 关键词:无人机, 航迹规划, 蜣螂优化算法, 最优领域扰动, 自适应变螺旋搜索, 非线性控制因子

Abstract: Abstract: UAV trajectory planning is an important challenge for UAVs to perform complex missions, which involves finding optimal paths in dynamic and uncertain environments, and the global search and local development problems in UAV trajectory planning have always been the focus of research, based on which this paper designs a multi-strategy hybrid optimization algorithm combined with the dung beetle optimization algorithm to improve the algorithm. In order to improve the global search and local exploitation ability of the algorithm, this paper adopts Latin hypercubic sampling to generate the initial population, adaptive variable spiral strategy to adjust the search direction, and optimal domain perturbation strategy to improve the overall convergence performance. In order to avoid the algorithm falling into the local optimum, Brownian motion and Levy flight strategy are added to dynamically adjust the algorithm development. Experimental results show that the MSIDBO proposed in this paper significantly improves the efficiency and accuracy of trajectory planning based on the guarantee of path length, smoothness and obstacle avoidance performance. The algorithm demonstrates superior global search capability and local optimization capability in uncertainty and dynamic environments, and is applicable to a variety of complex mission scenarios.

Key words: Key words: UAV, trajectory planning, dung beetle optimization algorithm, optimal domain perturbation, adaptive spiral search, nonlinear control factor

中图分类号: