计算机与现代化 ›› 2025, Vol. 0 ›› Issue (12): 107-114.doi: 10.3969/j.issn.1006-2475.2025.12.015

• 图像识别 • 上一篇    下一篇

基于高效交叉注意力的医学图像配准网络

  


  1. (广东工业大学计算机学院,广东 广州 510006)
  • 出版日期:2025-12-18 发布日期:2025-12-18
  • 作者简介: 作者简介:黄业勤(1998—),男,广东茂名人,硕士研究生,研究方向:医学图像处理,E-mail: 1093506161@qq.com。

Medical Image Registration Network Based on Efficient Cross-attention


  1. (School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China) 
  • Online:2025-12-18 Published:2025-12-18

摘要:
摘要:随着深度学习在医学图像分析中的广泛应用,医学图像配准方法取得了显著进展。然而,现有方法在特征提取和融合方面仍存在局限,尤其是在处理图像对之间独立解剖结构信息时的不足。为解决这一问题,本文提出一种基于高效交叉注意力的医学图像配准网络。该网络采用2个并行分支结构,通过交叉注意力机制独立处理并融合图像特征,有效提升配准精度。为降低计算复杂度和内存消耗,本文提出一种高效交叉注意力机制,在保持全局特征捕捉能力的同时提升计算效率。此外,本文模型结合Transformer和卷积神经网络(CNN),利用Transformer捕获远程依赖关系,同时使用CNN提取局部特征,减少模型参数量并提高训练效率。为了验证本文模型性能,在OASIS数据集和BraTs2018数据集上进行实验,本文模型在这2个数据集上的Dice相似系数分别达到了0.804和0.732,表现出优于其他方法的配准性能。实验结果表明,本文模型不仅提高了医学图像配准的精度,还优化了计算效率,具有广泛的应用潜力。


关键词: 关键词:医学图像处理, 图像配准, Transformer模型, 交叉注意力

Abstract: Abstract: With the widespread application of deep learning in medical image analysis, significant progress has been made in medical image registration methods. However, existing approaches still have limitations in feature extraction and fusion, particularly in handling independent anatomical structure information between image pairs. To address this issue, this paper proposes an efficient cross-attention-based medical image registration network. The network employs two parallel branches and independently processes and fuses image features through the cross-attention mechanism, effectively improving registration accuracy. To reduce computational complexity and memory consumption, this paper introduces an efficient cross-attention mechanism that preserves global feature capturing capability while enhancing computational efficiency. Additionally, the proposed model combines Transformer and Convolutional Neural Networks (CNN), utilizing the Transformer to capture long-range dependencies and the CNN to extract local features. This approach reduces the model’s parameter count and improves training efficiency. To evaluate the performance of the proposed model, experiments were conducted on the OASIS and BraTs2018 datasets. The proposed model achieves Dice coefficients of 0.804 and 0.732 on these two datasets, respectively, demonstrating superior registration performance compared to other methods. These experimental results indicate that the proposed model not only improves the accuracy of medical image registration but also optimizes computational efficiency, making it highly applicable in various scenarios.

Key words: Key words: medical image processing, image registration, Transformer model, cross-attention

中图分类号: