计算机与现代化 ›› 2025, Vol. 0 ›› Issue (12): 88-96.doi: 10.3969/j.issn.1006-2475.2025.12.013

• 图像识别 • 上一篇    下一篇

用于手卫生评估的多专家对比学习方法

  

  1. (1.合肥综合性国家科学中心人工智能研究院,安徽 合肥 230088; 2.安徽医科大学生物医学工程学院,安徽 合肥 230032;
    3.安徽大学,安徽 合肥 230039)
  • 出版日期:2025-12-18 发布日期:2025-12-18
  • 作者简介: 作者简介:涂子健(2001—),男,安徽潜山人,硕士研究生,研究方向:计算机视觉,手卫生动作质量评估,E-mail: 15178606408@163.com; 王梓(1998—),男,安徽安庆人,副教授,博士,研究方向:多模态学习,计算机视觉,医学图像处理,E-mail: ziwang1121@foxmail.com; 通信作者:汤进(1976—),男,安徽合肥人,教授,博士,研究方向:计算机视觉与深度学习,医学图像处理,E-mail: tangjin@ahu.edu.cn。
  • 基金资助:
    基金项目:国家自然科学基金面上项目(62076003)
      

Multi-experts Contrastive Learning Method for Hand Hygiene Assessment


  1. (1. Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; 2. School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China; 3. Anhui University, Hefei 230039, China)
  • Online:2025-12-18 Published:2025-12-18

摘要:
摘要:手卫生是预防医院感染的最有效手段之一,但医务人员的依从性普遍较低。基于计算机视觉的手卫生评估方法可以对手卫生动作进行分步骤评分,但在对微小动作的感知与评估方面仍然存在不足。为了解决这一问题,提出一种基于多专家对比学习的手卫生评估方法,采用多专家分割模块和动作对比评估模块,通过两阶段的评估流程,提升微小动作的分割与评估能力,实现更精准的手卫生动作评价。具体来说,首先利用多专家分割模块学习每个手卫生有效动作的特点,依赖特点信息进行高精度的动作分割推理;其次,动作对比评估模块基于对比学习方法,利用模版动作与当前动作的差异信息计算动作预测分数;最后,提出的方法输出每个有效动作的预测得分,综合计算后得到最终的预测总分。本文方法在手卫生评估数据集HHA300上取得的动作分割精度为91.4%,动作质量评估的相关系数为0.864,均优于现有的手卫生评估方法。多个对比实验与消融实验验证了本文方法中各个模块的有效性,说明本文方法能够使手卫生评估过程更加规范,实现手卫生动作的有效监管。



关键词: 关键词:手卫生, 动作质量评估, 动作分割, 计算机视觉, 多专家, 对比学习

Abstract: Abstract: Hand hygiene is one of the most effective measures for preventing hospital infections, yet compliance among healthcare workers remains relatively low. While existing computer vision-based hand hygiene evaluation methods can perform step-by-step scoring of hand hygiene action, they still struggle with accurately perceiving and assessing fine movements. To address this issue, a novel hand hygiene assessment method that employs a segmentation module with multi-experts and an action contrast evaluation module is proposed. Through a two-stage evaluation process, the method aims to enhance the segmentation and assessment of fine movements, thereby enabling a more accurate evaluation of hand hygiene action quality. Specifically, the segmentation module with multi-experts learns the characteristics of each effective hand hygiene action firstly, and performs high-precision action segmentation reasoning based on characteristic information. Secondly, the action contrast evaluation module uses a contrastive learning approach that leverages the differences between example actions and current actions to calculate the action prediction score. Ultimately, the proposed method outputs predicted scores for each effective action and computes the final predicted score through comprehensive calculation. The proposed method achieves an action segmentation accuracy of 91.4% and a correlation coefficient of 0.864 for action quality assessment on the hand hygiene assessment dataset HHA300, both superior to existing hand hygiene assessment methods. Multiple comparative and ablation experiments demonstrate the effectiveness of each module in the method, indicating that it standardizes the hand hygiene assessment process and enables effective monitoring of hand hygiene action.

Key words: Key words: hand hygiene, action quality assessment, action segmentation, computer vision, multi-experts, contrastive learning

中图分类号: