计算机与现代化 ›› 2025, Vol. 0 ›› Issue (12): 66-73.doi: 10.3969/j.issn.1006-2475.2025.12.010

• 算法设计与分析 • 上一篇    下一篇

KD-NeRF:知识蒸馏增强的果树神经辐射场重建方法

  

  1. (1.江西省科技基础条件平台中心,江西 南昌 330003; 2.江西农业大学软件学院,江西 南昌 330045)
  • 出版日期:2025-12-18 发布日期:2025-12-18
  • 作者简介:作者简介:汤辉(1989—),男,江西吉安人,高级工程师,硕士,研究方向:人工智能,网络安全,E-mail: 845173383@qq.com; 通信作者:刘鑫(1999—),江西南昌人,硕士研究生,研究方向:人工智能,E-mail: 2239770739@qq.com; 胡必伟(1987—),男,江西九江人,高级工程师,学士,研究方向:信息技术,E-mail: 798104137@qq.com; 刘帆(1999—),男,江西宜春人,硕士,研究方向:信息技术,有机化学,E-mail: liufanspd@163.com。
  • 基金资助:
     基金项目:江西省自然科学基金资助项目(20252BAC250020)
        

KD-NeRF: Knowledge Distillation-enhanced Neural Radiance Field Reconstruction Method for Fruit Trees

  1. (1. Jiangxi Provincial Science and Technology Infrastructure Center, Nanchang 330003, China;
    2. School of Software, Jiangxi Agricultural University, Nanchang 330045, China)
  • Online:2025-12-18 Published:2025-12-18

摘要: 摘要:精准农业对果树三维表型精确重建需求迫切。传统方法存在建模效率低、计算成本高的问题,同时二维分析受限于遮挡和深度缺失。神经辐射场(NeRF)虽表现优异,但训练耗时且资源密集,学习果树复杂结构面临挑战。本文提出一种融合知识蒸馏增强的NeRF果树三维重建方法(KD-NeRF)。该方法构建基于二维多视角图像的深度学习框架;采用SIREN周期性激活函数,通过隐式正则化增强高频细节捕获和空间连续性;设计教师-学生知识蒸馏机制,将深层表征传递至轻量级网络,提升复杂结构学习效能。在不同果树数据集上进行实验的结果表明,相较NeRF、KD-NeRF的PSNR提升8%,训练速度提升14倍~16倍。消融实验结果表明:教师-学生架构的PSNR、SSIM等指标有明显提升;SIREN增强了高频细节表征;两者协同产生了超越单一累加的性能增益。KD-NeRF解决了NeRF在果树重建中的效率瓶颈,可为果树表型分析、生长监测和智能育种提供良好技术支撑,推动了精准农业和智慧果园建设。


关键词: 关键词:深度学习, 农业技术, 三维重建, 神经辐射场, 知识蒸馏

Abstract: Abstract: Precision agriculture urgently demands accurate three-dimensional phenotypic reconstruction of fruit trees. Traditional methods suffer from low modeling efficiency and high computational costs, while two-dimensional analysis is constrained by occlusion and a lack of depth information. Although Neural Radiance Fields (NeRF) demonstrate excellent performance, they are time-consuming and resource-intensive to train, facing significant challenges in learning complex fruit tree structures. This study proposes a knowledge distillation-enhanced NeRF method for three-dimensional fruit tree reconstruction (KD-NeRF). We construct a deep learning framework based on two-dimensional multi-view images and employ SIREN periodic activation functions to enhance high-frequency detail capture and spatial continuity through implicit regularization. A teacher-student knowledge distillation mechanism is designed to transfer deep representations to lightweight networks, improving the learning efficiency for complex structures. Experiments on diverse fruit tree datasets demonstrate that compared to NeRF, KD-NeRF achieves an 8% improvement in PSNR with 14 times ~16 times acceleration in training speed. The results of the ablation experiment confirm that the teacher-student architecture significantly improves PSNR, SSIM, and other metrics; SIREN enhances high-frequency detail representation; and their synergy produces performance gains exceeding simple additive effects. KD-NeRF addresses the efficiency bottleneck of NeRF in fruit tree reconstruction, providing efficient technical support for fruit tree phenotypic analysis, growth monitoring, and intelligent breeding, thereby advancing precision agriculture and smart orchard construction.

Key words: Key words: deep learning, agricultural technology, 3D reconstruction, neural radiance fields, knowledge distillation

中图分类号: