计算机与现代化 ›› 2025, Vol. 0 ›› Issue (11): 89-96.doi: 10.3969/j.issn.1006-2475.2025.11.011

• 图像处理 • 上一篇    下一篇

动态不透明度滤波的三维高斯溅射优化与评估

  


  1. (1.湖南理工学院信息科学与工程学院,湖南 岳阳 414006; 2.湖南理工学院物理与电子科学学院,湖南 岳阳 414006;
    3.湖南理工学院体育学院,湖南 岳阳 414006)
  • 出版日期:2025-11-20 发布日期:2025-11-24
  • 作者简介: 作者简介:万思瑶(2001—),女,湖南岳阳人,硕士研究生,研究方向:图像处理与计算机视觉,E-mail: wwwanovo@gmail.com; 通信作者:陈思源(1990—),男,湖南岳阳人,副教授,博士,研究方向:遥感与测量,E-mail: siyuan@hnist.edu.cn。
  • 基金资助:
     基金项目:湖南省自然科学基金资助项目(2023JJ50282, 2024JJ7204); 湖南省水利厅基金资助项目(XSKJ2024064-65)

Optimization and Evaluation of 3D Gaussian Splatting with Dynamic Opacity Filtering


  1. (1.School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China;
    2. School of Physics and Electronic Science, Hunan Institute of Science and Technology, Yueyang 414006, China;
     3. School of Physical Education, Hunan Institute of Science and Technology, Yueyang 414006, China) 
  • Online:2025-11-20 Published:2025-11-24

摘要: 摘要:三维高斯溅射是一种高效的建模和渲染技术,在复杂场景处理和实时渲染中展现出显著优势。然而,在视角覆盖不足或光照条件复杂的情况下,由于数据支持不足和算法局限性,易出现噪声干扰和三维结构表示能力不足问题,进而影响模型的准确性和视觉质量。为解决这些问题,本文提出一种创新的三维高斯迭代优化方法,通过引入平衡密度与不透明度阈值的滤波机制,显著抑制噪声并提升模型在复杂场景中的几何表现力。此外,本文提出一种三维结构评估体系,用于衡量高斯椭球在三维重建中的几何准确性与结构表现。在DTU、Mip-NeRF 360和Tanks & Temples数据集上的实验表明,所提方法不仅在新视图生成中保持了较高视觉质量,而且在三维几何精度方面超越了现有基准模型以及2种基于三维高斯溅射的网格提取方法,包括基于表面引导的三维高斯重建方法(SuGaR)和高斯网格合成方法(GaMeS)。通过验证,所提出的滤波机制在不同场景中展现出优异的适应性,能够有效处理各类复杂光照和场景结构。


关键词: 关键词:三维高斯溅射, 动态不透明度阈值, 噪声抑制, 三维结构表示, 新视图生成

Abstract:
Abstract: 3D Gaussian splatting is an efficient modeling and rendering technique that demonstrates significant advantages in handling complex scenes and real-time rendering. However, when facing insufficient viewpoint coverage or complex lighting conditions, issues such as noise interference and inadequate 3D structure representation arise due to limited data support and algorithmic constraints, negatively impacting model accuracy and visual quality. To address these challenges, this paper presents an innovative 3D Gaussian iterative optimization method that introduces a filtering mechanism balancing density and opacity thresholds, significantly suppressing noise and enhancing the model’s geometric expressiveness in complex scenes. Furthermore, this paper presents a 3D structure evaluation system to assess the geometric accuracy and structural performance of Gaussian ellipsoids in 3D reconstruction. Experiments conducted on the DTU, Mip-NeRF 360, and Tanks & Temples datasets demonstrate that the proposed method not only maintains high visual quality in novel view generation but also surpasses existing baseline models in terms of 3D geometric accuracy. Additionally, it outperforms two state-of-the-art 3D Gaussian splatting-based mesh extraction methods: Surface-Guided Gaussian Reconstruction (SuGaR) and Gaussian Mesh Synthesis (GaMeS). Through verification, the proposed filtering mechanism exhibits excellent adaptability across different scenes, effectively handling various complex lighting conditions and scene structures.

Key words: Key words: 3D Gaussian splatting; dynamic opacity threshold; noise suppression;3D stucture representation; novel view synthesis ,

中图分类号: