计算机与现代化 ›› 2025, Vol. 0 ›› Issue (12): 54-60.doi: 10.3969/j.issn.1006-2475.2025.12.008

• 算法设计与分析 • 上一篇    下一篇

文献计量视角下港口设备故障知识图谱构建

  


  1. (大连海事大学航运经济与管理学院,辽宁 大连 116026) 
  • 出版日期:2025-12-18 发布日期:2025-12-18
  • 作者简介:作者简介:李桃迎(1983—),女,安徽宿州人,教授,博士,研究方向:人工智能,数据挖掘,物流系统优化,E-mail: litaoying@dlmu.edu.cn; 柳全(2001—),男,吉林延边人,硕士研究生,研究方向:港口设备故障分析,文本挖掘,E-mail: jizi.love@163.com; 董志宇(2001—),女,黑龙江绥化人,硕士研究生,研究方向:知识管理,文本挖掘,E-mail: 1253703965@qq.com; 韩嘉文(2002—),女,辽宁盘锦人,本科生,研究方向:知识图谱构建,E-mail: 1260557266@qq.com。
  • 基金资助:
    基金项目:教育部人文社科基金资助项目(21YJC630066); 辽宁省兴辽英才计划项目(XLYC1907084)
        

Construction of Knowledge Graph for Port Equipment Faults from Perspective of Bibliometrics


  1. (School of Maritime Economics and Management, Dalian Maritime University, Dalian 116026, China) 
  • Online:2025-12-18 Published:2025-12-18

摘要: 摘要:港口设备一旦出现故障会严重影响港口生产作业效率,造成安全隐患。虽然在关于港口领域的研究中集聚了大量有关设备故障的科研文献,但是这些文献往往由于侧重点不同而导致表达不一致的问题,增加了科研工作者、管理人员及时把握领域现状、快速获取知识的难度。构建港口设备故障知识图谱有助于对港口设备故障进行知识查询、智能问答,提升港口设备故障知识获取便利性、精准性。为此,以中文文献中关于港口设备故障的标题、摘要和关键词为数据集文本,采用BIO数据标注法和BERT-BiLSTM-CRF模型来抽取文本中的港口设备故障信息。通过引入本体对实体及其关系进行形式化描述,消除表达不一致的问题,形成三元组,并构建港口设备故障知识图谱,支持有关港口设备故障的知识查询与智能问答。以起重机故障知识图谱的构建为例,验证知识图谱构建的有效性,从而提升港口设备故障知识的高效管理和传播利用。



关键词: 关键词:港口设备故障, 知识图谱, 文本挖掘, 命名体识别, 智能问答

Abstract: Abstract: Once the port equipment malfunctions, it will seriously affect the efficiency of port production operations and cause safety hazards. Although a large number of scientific research literatures on equipment faults of port are gathered, they often have inconsistent expressions due to different focuses, which increases the difficulty for researchers and managers to timely grasp the current research status and quickly acquire knowledge. Constructing knowledge graph for port equipment faults helps to conduct knowledge queries and intelligent Q&A on port equipment faults, enhancing the efficient management and dissemination of knowledge on port equipment failures. To address this, this study adopts titles, abstracts, and keywords from Chinese literature on port equipment failures as dataset text and then employs the BIO data annotation method and the BERT-BiLSTM-CRF model to extract information about port equipment failures from the text. By introducing ontologies to formally describe entities and their relationships for solving inconsistencies and forming triplets, a knowledge graph of port equipment failures is constructed. This graph supports knowledge queries and intelligent Q&A related to port equipment failures. The construction of a crane failure knowledge graph serves as a case, validating the effectiveness of the knowledge graph construction, thereby enhancing the efficient management and dissemination of knowledge about port equipment failures.

Key words: Key words: port equipment malfunction, knowledge graph, text mining, named entity recognition, intelligent Q&A

中图分类号: