[1] 王洛飞. 无人机低空摄影测量在城市测绘保障中的应用前景[J]. 测绘与空间地理信息, 2014,37(2): 217-219.
[2] 胡传迅. 人工智能在计算机网络技术中的应用探究[J]. 安徽电子信息职业技术学院学报, 2018,17(3): 42-45.
[3] 韩凯,张红英,王远,等. 一种基于 Faster R-CNN 的车辆检测算法[J]. 西南科技大学学报(自然科学版), 2017,32(4): 65-70.
[4] 张晶晶,吴蕊珠,张伟康,等. 基于深度学习的智能驾驶目标追踪算法综述[C]// 中国计算机用户协会网络应用分会2017年第二十一届网络新技术与应用年会论文集, 2017.
[5] ACHARYA U R, OH S L, HAGIWARA Y, et al. Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals[J]. Computers in Biology and Medicine, 2018,100: 270-278.
[6] FOMIN I S, BAKHSHIEV A V, GROMOSHINSKII D A. Study of using deep learning nets for mark detection in space docking control images[J]. Procedia Computer Science, 2017,103:59-66.
[7] RAO J M, QIAO Y J, REN F, et al. A mobile outdoor augmented reality method combining deep learning object detection and spatial relationships for geovisualization[J]. Sensors, 2017,17(9): 1951.
[8] 王殿伟,何衍辉,李大湘,等. 改进的YOLOv3红外视频图像行人检测算法[J]. 西安邮电大学学报, 2018,23(4):48-52.
[9] 陈志韬. 基于深度学习的图像目标识别研究[D]. 哈尔滨:哈尔滨工程大学, 2018.
[10]陈聪,杨忠,宋佳蓉,等. 一种改进的卷积神经网络行人识别方法[J]. 应用科技, 2019,46(3):51-57.
[11]WANG X Y, HAN T X, YAN S C. An HOG-LBP human detector with partial occlusion handling[C]// 2009 IEEE 12th International Conference on Computer Vision. 2009:32-39.
[12]GIRSHICK R, DONAHUE J, DARRELLT, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2014:580-587.
[13]REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]// Advances in Neural Information Processing Systems. 2015:91-99.
[14]REDMON J, FARHADI A. YOLOv3: An Incremental Improvement [EB/OL]. (2018-04-18)[2019-05-01]. https://arxiv.org/abs/1804.02767.
[15]REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2017:7263-7271.
[16]REDMON J. Darknet: Open Source Neural Networks in C [EB/OL]. (2016-01-30)[2019-05-01]. http://pjreddie. com/darknet/.
[17]冯帅,张龙,贺小慧. 基于Jetson TK1和深度卷积神经网络的行人检测[J]. 信息技术, 2017(10):62-64.
[18]DOLLAR P, WOJEK C, SCHIELE B, et al. Pedestrian detection: An evaluation of the state of the art[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2012,34(4): 743-761.
[19]SIMONYAN K, ZISSERMAN A. Very Deep Convolutional Networks for Large-Scale Image Recognition[EB/OL]. (2014-09-04)[2019-05-01]. https://arxiv.org/abs/1409.1556.
[20]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
[21]XU B, WANG N Y, CHEN T Q, et al. Empirical Evaluation of Rectified Activations in Convolutional Network[EB/OL]. (2015-05-05)[2019-05-01]. https://arxiv.org/abs/1505.00853.
[22]LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]// European Conference on Computer Vision. 2016:21-37. |