[1] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems. 2012,1:1097-1105.
[2] 段萌,王功鹏,牛常勇. 基于卷积神经网络的小样本图像识别方法[J]. 计算机工程与设计, 2018,39(1):224-229.
[3] ABDEL-HAMID O, MOHAMED A R, JIANG H, et al. Convolutional neural networks for speech recognition[J]. IEEE ACM Transactions on Audio Speech & Language Processing, 2014,22(10):1533-1545.
[4] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// IEEE Conference on Computer Vision & Pattern Recognition. 2014:580-587.
[5] BOSE S, PAL A, SAHARAY R, et al. Generalized quadratic discriminant analysis[J]. Pattern Recognition, 2015,48(8):2676-2684.
[6] 张海波,董槐林,龙飞,等. 基于BP神经网络的图像识别研究[J]. 计算机与现代化, 2008(5):17-19.
[7] SHARMA A, PALIWAL K K. Linear discriminant analysis for the small sample size problem: An overview[J]. International Journal of Machine Learning & Cybernetics, 2015,6(3):443-454.
[8] 李刚,高政. 人脸自动识别方法综述[J]. 计算机应用研究, 2003,20(8):4-9.
[9] 宋晖,薛云,张良均. 基于SVM分类问题的核函数选择仿真研究[J]. 计算机与现代化, 2011(8):133-136.
[10]RADENOVIC F, TOLIAS G, CHUM O. Fine-tuning CNN image retrieval with no human annotation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017,47(1):1655-1668.
[11]MONTI F, BOSCAINI D, MASCI J, et al. Geometric deep learning on graphs and manifolds using mixture model CNNs[C]// IEEE Conference on Computer Vision & Pattern Recognition. 2017:5425-5434.
[12]〖JP3〗VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[J]. Advances in Neural Information Processing Systems, 2016,29(9):3630-3638.
[13]MENSINK T, VERBEEK J, PERRONNIN F, et al. Distance-based image classification: Generalizing to new classes at near-zero cost[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013,35(11):2624-2637.
[14]RAZAVIAN A S, AZIZPOUR H, SULLIVAN J, et al. CNN features off-the-shelf: An astounding baseline for recognition[C]// IEEE Conference on Computer Vision and Pattern Recognition. 2014:806-813.
[15]RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015,115(3):211-252.
[16]SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2015:1-9.
[17]CUI X D, GOEL V, KINGSBURY B. Data augmentation for deep neural network acoustic modeling[J]. IEEE-ACM Transactions on Audio Speech & Language Processing, 2015,23(9):5582-5586.
[18]DIGGAVI S N, CALDERBANK A R, DUSAD S, et al. Diversity-embedded space-time codes[J]. IEEE Transactions on Information Theory, 2008,54(1):33-50.
[19]WEINBERGER K Q, SAUL L K. Distance metric learning for large margin nearest neighbor classification[J]. Journal of Machine Learning Research, 2009,10:207-244.
[20]HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2015:1026-1034.
[21]SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014,15:1929-1958.
[22]CHILIMBI T, SUZUE Y, APACIBLE J, et al.Project Adam: Building an efficient and scalable deep learning training system[C]// Usenix Conference on Operating Systems Design & Implementation. 2014:571-582. |