[1] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems. 2012:1097-1105.
[2] SIMONYAN K, ZISSERMAN A. Very Deep Convolutional Networks for Large-scale Image Recognition [J/OL].(2014-09-15)[2019-07-01]. http://arxiv.org/abs/1409.1556v2.
[3] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. 2015:1-9.
[4] GIRSHICK R. Fast R-CNN[C]// Proceedings of IEEE International Conference on Computer Vision. 2015:1440-1448.
[5] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1137-1149.
[6] CHEN X, XIANG S, LIU C L, et al. Vehicle detection in satellite images by hybrid deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2014,11(10):1797-1801.
[7] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]// European Conference on Computer Vision. 2016:21-37.
[8] REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2017:7263-7271.
[9] 胡晨阳. 基于数字图像处理的嵌入式山体滑坡监测系统设计与实现[D]. 成都:西南交通大学, 2017.
[10]李扬. 面向图像目标识别和检测的深度神经网络关键技术研究[D]. 北京:北京邮电大学, 2018.
[11]〖JP3〗AREL I, ROSE D C, KARNOWSKI T P. Deep machine learning: A new frontier in artificial intelligence research[J]. Computational Intelligence Magazine, 2010,5(4):13-18.
[12]HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: A new learning scheme of feed forward neural networks[C]// Proceedings of IEEE International Conference on Neural Networks. 2004:985-990.
[13]闫河,王鹏,董莺艳,等. 一种CNN与ELM相结合的船舶分类识别方法[J]. 重庆理工大学学报(自然科学), 2019,33(1):53-57.
[14]PRASAD D K, RAJAN D, RACHMAWATI L, et al. Video processing from electrooptical sensors for object detection and tracking in maritime environment: A survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2017,18(8):1993-2016.
[15]BENJDIRA B, KHURSHEED T, KOUBAA A, et al. Car Detection Using Unmanned Aerial Vehicles: Comparison Between Faster R-CNN and YOLOv3[EB/OL].(2018-12-28)[2019-07-01]. https://arxiv.org/abs/1812.10968.
[16]REDMON J, DIVVALA S K, GIRSHICK R B, et al. You only look once: Unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:779-788.
[17]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway. 2016:770.
[18]REDMON J, FARHADI A. YOLOv3: An incremental improvement[C]// IEEE Conference on Computer Vision and Pattern Recognition. 2018:89-95.
[19]温捷文,战荫伟,凌伟林,等. 实时目标检测算法YOLO的批再规范化处理[J]. 计算机应用研究, 2018,35(10):3179-3185.
[20]施辉,陈先桥,杨英.改进YOLO v3的安全帽佩戴检测方法[J]. 计算机工程与应用, 2019,55(11):213-220.
[21]LIN T Y, DOLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// 2017 IEEE Conference on Computer Vision and Patern Recognition. 2017:936-944.
[22]LIU W Y, WEN Y D, YU Z D, et al. Large-margin softmax loss for convolutional neural networks[C]// Proceedings of the 33rd International Conference on Machine Learning. 2016:507-516. |