[1] ZHANG X, LIU L Y, CHEN X D, et al. A novel multitemporal cloud and cloud shadow detection method using the integrated cloud z-scores model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019,12(1):123-134.
[2] GUO J H, YANG J Y, YUE H J, et al. CDnetV2: CNN-based cloud detection for remote sensing imagery with cloud-snow coexistence[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021,59(1):700-713.
[3] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:7132-7141.
[4] WANG Q, WU B, ZHU P, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020:11531-11539.
[5] XIA G S, HU J W, HU F, et al. AID: A benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017,55(7):3965-3981.
[6] ZHANG Y L, YUAN Y, FENG Y C, et al. Hierarchical and robust convolutional neural network for very high-resolution remote sensing object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019,57(8):5535-5548.
[7] CHEN J, WAN L, ZHU J R, et al. Multi-scale spatial and channel-wise attention for improving object detection in remote sensing imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2020,17(4):681-685.
[8] TAN Q L, LING J, HU J, et al. Vehicle detection in high resolution satellite remote sensing images based on deep learning[J]. IEEE Access, 2020,8:153394-153402.
[9] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014:580-587.
[10]REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1137-1149.
[11]REDMON J, FARHADI A. YOLOv3: An incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018.
[12]BOCHKOVSKIY A, WANG C Y, MARK LIAO H Y. YOLOv4: Optimal speed and accuracy of object detection[J]. arXiv preprint arXiv:2004.10934, 2020.
[13]LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single ShotMultiBox Detector[C]// 2016 European Conference on Computer Vision. 2016:21-37.
[14]FU C Y, LIU W, RANGA A, et al. DSSD: Deconvolutional single shot detector[J]. arXiv preprint arXiv:1701.06659, 2017.
[15]HE K M, ZHANG X, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:770-778.
[16]LIN T, DOLLR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:936-944.
[17]LI H, XIONG P, AN J, et al. Pyramid attention network for semantic segmentation[J]. arXiv preprint arXiv:1805.10180, 2018.
[18]DOSOVITSKIY A, FISCHER P, SPRINGENBERG J T, et al. Discriminative unsupervised feature learning with exemplar convolutional neural networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016,38(9):1734-1747.
[19]YE M, ZHANG X, YUEN P C, et al. Unsupervised embedding learning via invariant and spreading instance feature[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019:6203-6212. 〖HJ0.27mm〗
[20]OORD A V D, LI Y, VINYALS O. Representation learning with contrastive predictive coding[J]. arXiv preprint arXiv:1807.03748, 2018.
[21]HNAFF O J, SRINIVAS A, FAUW J D, et al. Data-efficient image recognition with contrastive predictive coding[C]// Proceedings of the 37th International Conference on Machine Learning. 2020:4182-4192.
[22]DEVON HJELM R, FEDOROV A, LAVOIE-MARCHILDON S, et al. Learning deep representations by mutual information estimation and maximization[J]. arXiv preprint arXiv:1808.06670, 2018.
[23]BACHMAN P, HJELM R D, BUCHWALTER W. Learning representations by maximizing mutual information across views[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. 2019:15535-15545.
[24]WU Z R, XIONG Y J, YU S X, et al. Unsupervised feature learning via non-parametric instance discrimination[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:3733-3742.
[25]HE K M, FAN H Q, WU Y X, et al. Momentum contrast for unsupervised visual representation learning[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020:9726-9735.
[26]CHEN X L, FAN H Q, GIRSHICK R, et al. Improved baselines with momentum contrastive learning[J]. arXiv preprint arXiv:2003.04297, 2020.
[27]CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[J]. arXiv preprint arXiv:2002.05709, 2020.
[28]XIE E, DING J, WANG W, et al.DetCo: Unsupervised contrastive learning for object detection[C]// 2021 IEEE/CVF International Conference on Computer Vision (ICCV). 2021:8372-8381.
[29]LI Y, ZHANG Y, HUANG X, et al. Deep networks under scene-level supervision for multi-class geospatial object detection from remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018,146:182-196.
[30]LI Y, CHEN W, ZHANG Y, et al. Accurate cloud detection in high-resolution remote sensing imagery by weakly supervised deep learning[J]. Remote Sensing of Environment, 2020. DOI:10.1016/j.rse.2020.112045.
[31]LI Y, KONG D, ZHANG Y, et al. Robust deep alignment network with remote sensing knowledge graph for zero-shot and generalized zero-shot remote sensing image scene classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021,179:145-158.
[32]GUTMANN M, HYVRINEN A. Noise-contrastive estimation: A new estimation principle for unnormalized statistical models[J]. Journal of Machine Learning Research, 2010,9:297-304.
[33]CARON M, BOJANOWSKI P, JOULIN A, et al. Deepclustering for unsupervised learning of visual features[C]// 2018 European Conference on Computer Vision. 2018:139-156.
[34]CARON M, MISRA I, MAIRAL J, et al. Unsupervised learning of visual features by contrasting cluster assignments[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. 2020:9912-9924.
[35]JIANG Z, VON N K, LOISEL J, et al.ArcticNet: A deep learning solution to classify arctic wetlands[J]. arXiv preprint arXiv:1906.00133, 2019.
[36]LU X, ZHANG Y, YUAN Y, et al. Gated and axis-concentrated localization network for remote sensing object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020,58(1):179-192.
[37] 韩伟. 基于深度神经网络的高分辨率遥感影像弱小目标检测[D]. 武汉:中国地质大学, 2021.
|