计算机与现代化 ›› 2022, Vol. 0 ›› Issue (12): 88-94.
出版日期:
2023-01-04
发布日期:
2023-01-04
作者简介:
焦新泉(1978—),男,山西太原人,教授,博士,研究方向:微纳传感及测试技术,E-mail: jiaoxinquan@nuc.edu.cn; 通信作者:李睿康(1996—),男,山西太原人,硕士研究生,研究方向:嵌入式开发,深度学习,计算机视觉,E-mail: 605430725@qq.com; 陈建军(1978—),男,山西太原人,讲师,博士,研究方向:动态测试技术,智能传感器,机器视觉,嵌入式系统开发,E-mail: cjj@nuc.edu.cn。
基金资助:
Online:
2023-01-04
Published:
2023-01-04
摘要: 卫星遥感图像的智能化处理存在着处理标注时标准不统一、数据分布不均匀的问题,导致有效样本不多、目标检测效果较差的现象。针对这种现象,提出一种基于MoCo无监督对比学习模型的目标检测算法,目标检测的框架采用以ResNet50为骨干网络的YOLOv5,使用对比学习得到的ResNet50的权重作为固定值不进行梯度迭代参与YOLOv5下游的检测任务训练。对比学习实验在AID数据集上进行,改进的MoCo v2的top-1精度最高达到95.888%。在下游的检测任务中,使用的是TGRS-HRRSD数据集,改进MoCo v2的预训练权重的mAP@.5:.95精度达到67.8%,较不使用预训练权重提高了5.6个百分点。结果证明改进的MoCo对比学习模型的有效性,在对比学习之后的下游检测任务中,检测精度也有所提高。
焦新泉, 李睿康, 陈建军. 基于改进的MoCo的遥感图像目标检测[J]. 计算机与现代化, 2022, 0(12): 88-94.
JIAO Xin-quan, LI Rui-kang, CHEN Jian-jun. Remote Sensing Image Object Detection Based on Improved MoCo[J]. Computer and Modernization, 2022, 0(12): 88-94.
[1] | ZHANG X, LIU L Y, CHEN X D, et al. A novel multitemporal cloud and cloud shadow detection method using the integrated cloud z-scores model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019,12(1):123-134. |
[2] | GUO J H, YANG J Y, YUE H J, et al. CDnetV2: CNN-based cloud detection for remote sensing imagery with cloud-snow coexistence[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021,59(1):700-713. |
[3] | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:7132-7141. |
[4] | WANG Q, WU B, ZHU P, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020:11531-11539. |
[5] | XIA G S, HU J W, HU F, et al. AID: A benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017,55(7):3965-3981. |
[6] | ZHANG Y L, YUAN Y, FENG Y C, et al. Hierarchical and robust convolutional neural network for very high-resolution remote sensing object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019,57(8):5535-5548. |
[7] | CHEN J, WAN L, ZHU J R, et al. Multi-scale spatial and channel-wise attention for improving object detection in remote sensing imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2020,17(4):681-685. |
[8] | TAN Q L, LING J, HU J, et al. Vehicle detection in high resolution satellite remote sensing images based on deep learning[J]. IEEE Access, 2020,8:153394-153402. |
[9] | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014:580-587. |
[10] | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1137-1149. |
[11] | REDMON J, FARHADI A. YOLOv3: An incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018. |
[12] | BOCHKOVSKIY A, WANG C Y, MARK LIAO H Y. YOLOv4: Optimal speed and accuracy of object detection[J]. arXiv preprint arXiv:2004.10934, 2020. |
[13] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single ShotMultiBox Detector[C]// 2016 European Conference on Computer Vision. 2016:21-37. |
[14] | FU C Y, LIU W, RANGA A, et al. DSSD: Deconvolutional single shot detector[J]. arXiv preprint arXiv:1701.06659, 2017. |
[15] | HE K M, ZHANG X, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:770-778. |
[16] | LIN T, DOLLR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:936-944. |
[17] | LI H, XIONG P, AN J, et al. Pyramid attention network for semantic segmentation[J]. arXiv preprint arXiv:1805.10180, 2018. |
[18] | DOSOVITSKIY A, FISCHER P, SPRINGENBERG J T, et al. Discriminative unsupervised feature learning with exemplar convolutional neural networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016,38(9):1734-1747. |
[19] | YE M, ZHANG X, YUEN P C, et al. Unsupervised embedding learning via invariant and spreading instance feature[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019:6203-6212. 〖HJ0.27mm〗 |
[20] | OORD A V D, LI Y, VINYALS O. Representation learning with contrastive predictive coding[J]. arXiv preprint arXiv:1807.03748, 2018. |
[21] | HNAFF O J, SRINIVAS A, FAUW J D, et al. Data-efficient image recognition with contrastive predictive coding[C]// Proceedings of the 37th International Conference on Machine Learning. 2020:4182-4192. |
[22] | DEVON HJELM R, FEDOROV A, LAVOIE-MARCHILDON S, et al. Learning deep representations by mutual information estimation and maximization[J]. arXiv preprint arXiv:1808.06670, 2018. |
[23] | BACHMAN P, HJELM R D, BUCHWALTER W. Learning representations by maximizing mutual information across views[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. 2019:15535-15545. |
[24] | WU Z R, XIONG Y J, YU S X, et al. Unsupervised feature learning via non-parametric instance discrimination[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:3733-3742. |
[25] | HE K M, FAN H Q, WU Y X, et al. Momentum contrast for unsupervised visual representation learning[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020:9726-9735. |
[26] | CHEN X L, FAN H Q, GIRSHICK R, et al. Improved baselines with momentum contrastive learning[J]. arXiv preprint arXiv:2003.04297, 2020. |
[27] | CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[J]. arXiv preprint arXiv:2002.05709, 2020. |
[28] | XIE E, DING J, WANG W, et al.DetCo: Unsupervised contrastive learning for object detection[C]// 2021 IEEE/CVF International Conference on Computer Vision (ICCV). 2021:8372-8381. |
[29] | LI Y, ZHANG Y, HUANG X, et al. Deep networks under scene-level supervision for multi-class geospatial object detection from remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018,146:182-196. |
[30] | LI Y, CHEN W, ZHANG Y, et al. Accurate cloud detection in high-resolution remote sensing imagery by weakly supervised deep learning[J]. Remote Sensing of Environment, 2020. DOI:10.1016/j.rse.2020.112045. |
[31] | LI Y, KONG D, ZHANG Y, et al. Robust deep alignment network with remote sensing knowledge graph for zero-shot and generalized zero-shot remote sensing image scene classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021,179:145-158. |
[32] | GUTMANN M, HYVRINEN A. Noise-contrastive estimation: A new estimation principle for unnormalized statistical models[J]. Journal of Machine Learning Research, 2010,9:297-304. |
[33] | CARON M, BOJANOWSKI P, JOULIN A, et al. Deepclustering for unsupervised learning of visual features[C]// 2018 European Conference on Computer Vision. 2018:139-156. |
[34] | CARON M, MISRA I, MAIRAL J, et al. Unsupervised learning of visual features by contrasting cluster assignments[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. 2020:9912-9924. |
[35] | JIANG Z, VON N K, LOISEL J, et al.ArcticNet: A deep learning solution to classify arctic wetlands[J]. arXiv preprint arXiv:1906.00133, 2019. |
[36] | LU X, ZHANG Y, YUAN Y, et al. Gated and axis-concentrated localization network for remote sensing object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020,58(1):179-192. |
[37] | 韩伟. 基于深度神经网络的高分辨率遥感影像弱小目标检测[D]. 武汉:中国地质大学, 2021. |
[1] | 栗伟松, 汤敏芳, 何征岭, 王鹏, 杜利东, 方震, 陈贤祥. 基于自注意力机制和单导联心电信号的自动睡眠分期算法#br#[J]. 计算机与现代化, 2022, 0(12): 50-59. |
[2] | 张飙, 王慧贤, 韩冰, . 基于改进YOLOv3的高分辨率遥感图像复合目标检测[J]. 计算机与现代化, 2022, 0(12): 74-80. |
[3] | 黄忠祥, 李明. ALBERT结合双向网络的文本分类[J]. 计算机与现代化, 2022, 0(10): 8-12. |
[4] | 于鹏, 陈钰枫, 徐金安, 张玉洁. 基于多任务学习的电子病历实体识别方法[J]. 计算机与现代化, 2022, 0(09): 40-50. |
[5] | 孟晓龙, . DNeStCount:数据相关的拆分注意力机制的编码器-解码器结构的人群计数方法[J]. 计算机与现代化, 2022, 0(09): 68-77. |
[6] | 王梦, 张鸿鑫, 刘庆华, 张东. 基于改进YOLOv5的幽门螺杆菌免疫印迹图像识别[J]. 计算机与现代化, 2022, 0(09): 78-84. |
[7] | 许鸿奎, 张子枫, 卢江坤, 周俊杰, 胡文烨, 姜彤彤. 混合CTC/Attention模型在普通话识别中的应用[J]. 计算机与现代化, 2022, 0(08): 1-6. |
[8] | 周慧, 徐名海, 许晓东. 基于Attention-BIGRU-CRF的中文分词模型[J]. 计算机与现代化, 2022, 0(08): 7-12. |
[9] | 冯申, 於跃成, 张宗海. 结合动态多类信息的兴趣点推荐[J]. 计算机与现代化, 2022, 0(08): 57-64. |
[10] | 任秋霖, 任德均, 李鑫, 闫宗一, 曹林杰, 唐洪. 基于卷积自编码器的医用玻璃瓶口缺陷检测方法[J]. 计算机与现代化, 2022, 0(08): 114-120. |
[11] | 孙弘扬, 王尚. 基于残差门控循环卷积和注意力机制的端到端光学乐谱识别方法[J]. 计算机与现代化, 2022, 0(07): 85-90. |
[12] | 贺雨霞, 曹国. 基于改进注意力网络的转炉炼钢状态判别[J]. 计算机与现代化, 2022, 0(07): 97-102. |
[13] | 饶海兵, 朱苏磊, 杨春夏. 基于空时特征融合和注意力机制的网络入侵检测模型[J]. 计算机与现代化, 2022, 0(06): 116-121. |
[14] | 张宗海, 於跃成, 冯申. 融合三重注意力和评论评分的深度推荐算法[J]. 计算机与现代化, 2022, 0(05): 1-9. |
[15] | 王柯阳, 张铫, 李科闻, 张保谦, 李江, 任杰文. 基于Attention-LSTM的CNC刀具破损在线检测系统[J]. 计算机与现代化, 2022, 0(05): 68-74. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||