[1] JING L, TIAN Y. Self-supervised visual feature learning with deep neural networks: Asurvey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021,43(11):4037-4058.
[2] LLOYD S. Least squares quantization in PCM[J]. IEEE Transactions on Information Theory, 1982,28(2):129-137.
[3] ESTER M, KRIEGEL H, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]// Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. 1996:226-231.
[4] WANG L, DING S, JIA H. An improvement of spectral clustering via message passing and density sensitivesimilarity[J]. IEEE Access, 2019,7:101054-101062.
[5] LIN W A, CHEN J C, CASTILLO C D, et al. Deep density clustering of unconstrained faces[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. 2018:8128-8137.
[6] LIN W A, CHEN J C, CHELLAPPA R. A proximity-aware hierarchical clustering of faces[C]// 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017). 2017:294-301.
[7] ZHU C, WEN F, SUN J. A rank-order distance based clustering algorithm for face tagging[C]// Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. 2011:481-488.
[8] ZHANG M, CHEN Y. Link prediction based on graph neural networks[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. 2018:5171-5181.
[9] OTTO C, WANG D, JAIN A K. Clustering millions of faces byidentity[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018,40(2):289-303.
[10]ZHAN X, LIU Z, YAN J, et al. Consensus-driven propagation in massive unlabeled data for face recognition[C]// Proceedings of the 2018 European Conference on Computer Vision (ECCV). 2018:568-583.
[11]WANG Z, ZHENG L, LI Y, et al. Linkagebased face clustering via graph convolution network[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019:1117-1125.
[12]KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv preprint arXiv:1609.02907, 2016.
[13]VELI〖XCC1.TIF,JZ〗KOVI〖XCC.TIF;%90%90,JZ〗 P, CUCURULL G, CASANOVA A, et al. Graphattention networks[J]. arXiv preprint arXiv:1710.10903, 2017.
[14]王文博,罗恒利. 基于图卷积神经网络的完全图人脸聚类[J]. 计算机科学, 2021,48(z2):275-277.
[15]LI Q, HAN Z, WU X. Deeper insights into graph convolutional networks for semi-supervised learning[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence and 30th Innovative Applications of Artificial Intelligence Conference and 8th AAAI Symposium on Educational Advances in Artificial Intelligence. 2018:3538-3545.
[16]TOLSTIKHIN I, HOULSBY N, KOLESNIKOV A, et al. MLP-mixer: An all-MLP architecture for vision[J]. arXiv preprint arXiv:2105.01601, 2021.
[17]DING X H, ZHANG X Y, HAN J G, et al. RepMLP: Re-parameterizing convolutions into fully-connected layers for image recognition[J]. arXiv preprint arXiv:2105.01883, 2021.
[18]TOUVRON H, BOJANOWSKI P, CARON M, et al.ResMLP: Feedforward networks for image classification with data-efficient training[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.DOI:10.1109/TPAMI.2022.3206148.
[19]TOUVRON H, CORD M, DOUZE M, et al. Training data-efficient image transformers & distillation throughattention[J]. arXiv preprint arXiv:2012.12877, 2020.
[20]RAM P, SINHA K. Revisiting kd-tree for nearest neighbor search[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019:1378-1388.
[21]ANTALAN J R M, CAMPENA F J. A breadth-first search tree construction for multiplicative circulant graphs[J]. European Journal of Pure and Applied Mathematics, 2021,14(1):248-264.
[22]MCDAID A F, GREENE D, HURLEY N. Normalized Mutual Information to evaluate overlapping community finding algorithms[J]. arXiv preprint arXiv:1110.2515, 2011.
[23]AMIG E, GONZALO J, ARTILES J, et al. A comparison of extrinsic clustering evaluation metrics based on formalconstraints[J]. Information Retrieval, 2009,12(4):461-486.
[24]BANERJEE A, KRUMPELMAN C, GHOSH J, et al. Model-based overlapping clustering[C]// Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining. 2005:532-537.
[25]SHI Y, OTTO C, JAIN A K. Face clustering: Representation and pairwise constraints[J]. IEEE Transactions on Information Forensics and Security, 2018,13(7):1626-1640.
[26]GUO Y, ZHANG L, HU Y, et al. MS-celeb-1m: A dataset and benchmark for large-scale face recognition[C]// 2016 European Conference on Computer Vision. 2016:87-102.
[27]DENG J, GUO J, XUE N, et al. ArcFace: Additive angular margin loss for deep face recognition[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019:4685-4694.
[28]SCULLEY D. Web-scale k-means clustering[C]// Proceedings of the 19th International Conference on World Wide Web. 2010:1177-1178.
[29]SIBSON R. SLINK: An optimally efficient algorithm for the single-link cluster method[J]. The Computer Journal, 1973,16(1). DOI:10.1093/comjnl/16.1.30.
[30]HE K M, ZHANG X, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:770-778.
|