[1] 李勇. 基于机器视觉的玻璃瓶在线检测系统研究[D]. 济南:山东大学, 2012:9-16.
[2] 吴华运,任德均,吕义钊,等. 基于改进的RetinaNet医药空瓶表面气泡检测[J]. 四川大学学报(自然科学版), 2020(6):1090-1095.
[3] 陶显,侯伟,徐德. 基于深度学习的表面缺陷检测方法综述[J]. 自动化学报, 2021(2):1017-1034.
[4] RIPPEL O, MERTENS P, MERHOF D. Modeling the distribution of normal data in pre-trained deep features for anomaly detection[J]. arXiv preprint arXiv: 2005.14140, 2020.
[5] CHANDOLA V, BANERJEE A, KUMAR V. Anomaly detection: A survey[J]. ACM Computing Surveys, 2009,41(3):1-58.
[6] BAUR C, DENNER S, WIESTLER B, et al. Autoencoders for unsupervised anomaly segmentation in brain MR images: A comparative study[J]. arXiv preprint arXiv:2004.03271, 2020.
[7] BERGMANN P, FAUSER M, SATTLEGGER D, et al. Uninformed students: Student-teacher anomaly detection with discriminative latent embeddings[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020:4182-4191.
[8] CHU W H, KITANI K M. Neural batch sampling with reinforcement learning for semi-supervised anomaly detection[C]// European Conference on Computer Vision. 2020:751-766.
[9] RUDOLPH M, WANDT B, ROSENHAHN B. Same same but differnet: Semi-supervised defect detection with normalizing flows[C]// Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). 2021:1907-1916.
[10]ZONG B, SONG Q, MIN M R, et al. Deep autoencoding gaussian mixture model for unsupervised anomaly detection[C]// International Conference on Learning Representations. 2018.
[11]AKCAY S, ATAPOUR-ABARGHOUEI A, BRECKON T P. Ganomaly: Semi-supervised anomaly detection via adversarial training[C]// Asian Conference on Computer Vision. 2018:622-637.
[12]SCHLEGL T, SEEBCK P, WALDSTEIN S M, et al. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery[C]// International Conference on Information Processing in Medical Imaging. 2017:146-157.
[13]ZIMMERER D, ISENSEE F, PETERSEN J, et al. Unsupervised anomaly localization using variational auto-encoders[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. 2019:289-297.
[14]王江辉,吴小俊. 基于形状轮廓特征的金字塔匹配算法[J]. 计算机工程与应用, 2019,55(1):191-195.
[15]IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]// Proceedings of the 32nd International Conference on International Conference on Machine Learning. 2015,37(7): 448-456.
[16]XU B, WANG N, CHEN T, et al. Empirical evaluation of rectified activations in convolutional network[J]. arXiv preprint arXiv:1505.00853, 2015.
[17]万文菲. 面向人眼视觉感知特性的图像质量评价[D]. 西安:西安电子科技大学, 2020.
[18]WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]// European Conference on Computer Vision. 2018:3-19.
[19]NAJIBI M, SAMANGOUEI P, CHELLAPPA R, et al. SSH: Single stage headless face detector[C]// 2017 IEEE International Conference on Computer Vision (ICCV). 2017:4885-4894.
[20]MEI S, YANG H, YIN Z. An unsupervised-learning-based approach for automated defect inspection on textured surfaces[J]. IEEE Transactions on Instrumentation and Measurement, 2018,67(6):1266-1277.
[21]WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004,13(4):600–612.
[22]BERGMANN P, LWE S, FAUSER M, et al. Improving unsupervised defect segmentation by applying structural similarity to autoencoders[C]// 14th International Conference on Computer Vision Theory and Applications. 2019. DOI:10.5220/0007364503720380.
[23]WANG Z, SIMONCELLI E P, BOVIK A C. Multiscale structural similarity for image quality assessment[C]// The 37th Asilomar Conference on Signals, Systems & Computers. 2003:1398-1402.
[24]ALAIN H, ZIOU D. Image quality metrics: PSNR vs. SSIM[C]// 2010 20th International Conference on Pattern Recognition. 2010:2366-2369.
[25]BERGMANN P, LWE S, FAUSER M, et al. Improving unsupervised defect segmentation by applying structural similarity to autoencoders[C]// 14th International Conference on Computer Vision Theory and Applications. 2019. DOI:10.5220/0007364503720380.
[26]SCHLEGL T, SEEBCK P, WALDSTEIN S M, et al. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery[C]// International Conference on Information Processing in Medical Imaging. 2017:146-157.
[27]LIU W, LI R, ZHENG M, et al. Towards visually explaining variational autoencoders[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020:8642-8651.
|