[1] FREEMAN W T, PASZTOR C E, CARMICHAEL O T. Learning low-level vision[J]. International Journal of Computer Vision, 2000,40:25-47.
[2] IRANI M, PELEG S. Improving resolution by image registration[J]. CVGIP: Graphical Models and Image Processing, 1991,53(3):231-239.
[3] YANG F, YANG H, FU J, et al. Learning texture transformer network for image super-resolution[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020:5791-5800.
[4] ZHANG Y, ZHANG Z, DIVERDI S, et al. Texture hallucination for large-factor painting super-resolution[C]// European Conference on Computer Vision. 2020:209-225.
[5] DONG C, LOY C C, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015,38(2):295-307.
[6] 周登文,赵丽娟,段然,等. 基于递归残差网络的图像超分辨率重建[J]. 自动化学报, 2019,45(6):1157-1165.
[7] 段然,周登文,赵丽娟,等. 基于多尺度特征映射网络的图像超分辨率重建[J]. 浙江大学学报(工学版), 2019,53(7):1331-1339.
[8] 周登文,马路遥,田金月,等. 基于特征融合注意网络的图像超分辨率重建[J/OL], 自动化学报, 2021. https://doi.org/10.16383/j.aas.c190428.
[9] 陈一鸣,周登文. 基于自适应级联的注意力网络的超分辨重建[J/OL]. 自动化学报, 2021. https://doi.org/10.16383/j.aas.c200035.
[10]李金新,黄志勇,李文斌,等. 基于多层次特征融合的图像超分辨率重建[J/OL]. 自动化学报, 2020. https://doi.org/10.16383/j.aas.c200585.
[11]LAI W S, HUANG J B, AHUJA N, et al. Deep laplacian pyramid networks for fast and accurate super-resolution[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:5835-5843.
[12]ZHANG Y, LI K, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]// Proceedings of the European Conference on Computer Vision (ECCV). 2018:286-301.
[13]ZHANG Z, WANG Z, LIN Z, et al. Image super-resolution by neural texture transfer[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019:7982-7991.
[14]YAN X, ZHAO W, YUAN K, et al. Towards content-independent multi-reference super-resolution: Adaptive pattern matching and feature aggregation[C]// European Conference on Computer Vision. 2020:52-68.
[15]XIE Y, XIAO J, SUN M, et al. Feature representation matters: End-to-end learning for reference-based image super-resolution[C]// European Conference on Computer Vision. 2020:230-245.
[16]SHIM G, PARK J, KWEON I S. Robust reference-based super-resolution with similarity-aware deformable convolution[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020:8425-8434.
[17]PARMAR N, VASWANI A, USZKOREIT J, et al. Image transformer[C]// Proceedings of the 35th International Conference on Machine Learning. 2018:4055-4064.
[18]ZENG Y, FU J, CHAO H, et al. Learning pyramid-context encoder network for high-quality image inpainting[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019:1486-1494.
[19]TONG T, LI G, LIU X, et al. Image super-resolution using dense skip connections[C]// Proceedings of the IEEE International Conference on Computer Vision (ICCV). 2017:4799-4807.
[20]YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[J]. arXiv preprint arXiv:1511.07122, 2015.
[21]CCIR. Studio encoding parameters of digital television for standard 4〖DK〗∶3 and wide-screen 16〖DK〗∶ 9 aspect ratios:ITU-R BT.601-5[S]. Radio Consultative Committee Int. Telecommun. 2011.
[22]POYNTON C. YUV and luminance considered harmful: A plea for precise terminology in video[J]. Charles Poynton, 2001.
[23]HOR A, ZIOU D. Image quality metrics: PSNR vs. SSIM[C]// 2010 20th International Conference on Pattern Recognition. 2010:2366-2369.
[24]WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004,13(4): 600-612.
[25]KINGMA D P, BA J. Adam: A method for stochastic optimization[J]. arXiv preprint arXiv:1412.6980, 2014.
[26]LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. 2017:136-144.
[27]LEDIG C, THEIS L, HUSZAR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:4681-4690.
|