[1] 黄洲,齐向阳. 合成孔径雷达图像船舶检测分析系统[J]. 微计算机信息, 2009(6):298-300.
[2] HUANG J, JIANG Z G, ZHANG H P, et al. Region proposal for ship detection based on structured forests edge method[C]// 2017 IEEE International Geoscience and Remote Sensing Symposium. 2017:1856-1859.
[3] SHAO Z F, WANG L G, WANG Z Y, et al. Saliency-aware convolution neural network for ship detection in surveillance video[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020,30(3):781-794.
[4] MOHANTY N C. Image enhancement and recognition of moving ship in cluttered background[J]. IEEE Transaction on PAMI, 1981,3(5):606-610.
[5] 胡耀辉,张科,邢超. 基于海天线的舰船弱小目标检测[J]. 西北工业大学学报, 2019,37(1):35-40.
[6] LIN H N, SHI Z W, ZOU Z X. Fully convolutional network with task partitioning for inshore ship detection in optical remote sensing images[J]. IEEE Geoscience Remote Sensing Letters, 2017,14(10):1665-1669.
[7] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:779-788.
[8] REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]// IEEE Conference on Computer Vision & Pattern Recognition. 2017:6517-6525.
[9] REDMON J, FARHADI A. YOLOv3: An incremental improvement[J]. Computer Vision and Pattern Recognition, 2018, arXiv:1804.02767.
[10]BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[J]. Computer Vision and Pattern Recognition, 2020,arXiv:2004.10934.
[11]段敬雅,李彬,董超,等. 基于YOLOv2的船舶目标检测分类算法[J]. 计算机工程与设计, 2020,41(6):209-215.
[12]CHEN L K, LI B Y, QI L. Improved YOLOv3 algorithm for ship target detection[C]// 2020 39th Chinese Control Conference. 2020:7288-7293.〖HJ1.85mm〗
[13]WANG Y, WANG L, JIANG Y, et al. Detection of self-build data set based on YOLOv4 network[C]// 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education. 2020:640-642.
[14]HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018:7132-7141.
[15]XIAO T J, XU Y C, YANG K Y, et al. The application of two-level attention models in deep convolutional neural network for fine-grained image classification[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015:842-850.
[16]WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]// Proceedings of the European Conference on Computer Vision. 2018:3-19.
[17]BI F K, ZHU B C, GAO L, et al. A visual search inspired computational model for ship detection in optical satellite images[J]. IEEE Geoscience Remote Sensing Letters, 2012,9(4):749-753.
[18]SONG Z, SUI H G, WANG Y J. Automatic ship detection for optical satellite images based on visual attention model and LBP[C]// 2014 IEEE Workshop on Electronics, Computer and Applications. 2014:722-725.
[19]CUI H Y, YANG Y, LIU M Y, et al. Ship detection: An improved YOLOv3 method[C]// OCEANS 2019-Marseille. 2019:1-4.
[20]DENG J, DONG W, SOCHER R, et al. Imagenet: A large-scale hierarchical image database[C]// 2009 IEEE Conference on Computer Vision and Pattern Recognition. 2009:248-255.
[21]EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2009,88(2):303-338.
[22]SHAO Z F, WU W J, WANG Z Y, et al. SeaShips: A large-scale precisely annotated dataset for ship detection[J]. IEEE Transactions on Multimedia, 2018,20(10):2593-2604.
[23]ZHENG Y T, ZHANG S. Mcships: A large-scale ship dataset for detection and fine-grained categorization in the wild[C]// 2020 IEEE International Conference on Multimedia and Expo. 2020:1-6.
[24]ARTHUR D, VASSILVITSKII S. K-Means+〖KG-*3〗+: The advantages of careful seeding[C]// Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms. 2007:7-9.
[25]ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: Faster and better learning for bounding box regression[C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2020:12993-13000.
|