[1] MA X L, YU Y A, LI X D, et al. A survey of weight vector adjustment methods for decomposition based multi-objective evolutionary algorithms[J]. IEEE Transactions on Evolutionary Computation, 2020,24(4):634-649.
[2] LIU S B, LIN Q Z, WONG K C, et al. A novel multi-objective evolutionary algorithm with dynamic decomposition strategy[J]. Swarm and Evolutionary Computation, 2019,48:182-200.
[3] 汪天允,张浩. 基于人工鱼群算法的电动汽车优化充电策略[J/OL]. 电测与仪表, 2021:1-6[2021-01-20]. http://kns.cnki.net/kcms/detail/23.1202.th.20210118.0959.002.html.
[4] 陈娟,荆昊,方宇杰. 基于多种群协同进化算法的混合交通流信号优化[J]. 上海大学学报(自然科学版), 2020,26(6):1001-1014.
[5] 周炳海,李秀娟. 基于改进多目标布谷鸟搜索算法的汽车装配线物料配送调度[J]. 湖南大学学报(自然科学版), 2020,47(12):1-8.
[6] 魏家柱. 基于自适应多目标权重粒子群算法的负荷分配方法研究[J]. 分布式能源, 2020,5(6):7-12.
[7] 邹小云,林文学. 基于多目标演化算法和改进概率分类的重尾时间序列预测[J]. 计算机应用与软件, 2020,37(12):273-279.
[8] 陈韬伟,宋楠,余益民,等. PMOPSO算法在雷达辐射源信号聚类分选中的应用[J]. 现代雷达, 2020,42(11):48-53.
[9] ABEDINIA O, AMJADY N, GHASEMI A. A new metaheuristic algorithm based on shark smell optimization[J]. Complexity, 2016,21(5):97-116.
[10]KUMAR R S, KONDAPANENI K, DIXIT V, et al. Multi-objective modeling of production and pollution routing problem with time window: A selflearning particle swarm optimization approach[J]. Computers and Industrial Engineering, 2016,99:29-40.
[11]张伟,黄卫民. 基于种群分区的多策略自适应多目标粒子群算法[J/OL]. 自动化学报, 2020:1-14[2021-01-20]. http://kns.cnki.net/kcms/detail/11.2109.TP.20200915.0941.002.html.
[12]赖文星,邓忠民. 基于支配强度的NSGA2改进算法[J]. 计算机科学, 2018,45(6):187-192.
[13]LIU Y. A fast and elitist multi-objective particle swarm algorithm: NSPSO[C]// The 2008 IEEE International Conference on Granular Computing. 2008:470-475.
[14]WU D Q, LIU L, GONG X J, et al. An efficient co-evolutionary particle swarm optimizer for solving multi-objective optimization problems[C]// 2015 27th Chinese Control and Decision Conference. 2015:1975-1979.
[15]ZHANG Q F, LI H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007,11(6):712-731.
[16]PENG W, ZHANG Q F. A decomposition-based multi-objective particle swarm optimization algorithm for continuous optimization problems[C]// 2008 IEEE International Conference on Granular Computing. 2008:534-537.
[17]MOUBAYED N A, PETROVSKI A, MCCALL J. D2MOPSO: MOPSO based on decomposition and dominance with archiving using crowding distance in objective and solution spaces[J]. Evolutionary Computation, 2014,22(1):47-77.
[18]HU Z Y, YANG J M, CUI H H, et al. Multi-objective particle swarm optimization algorithm based on leader combination of decomposition and dominance[J]. Journal of Intelligent & Fuzzy Systems, 2017,33(3):1577-1588.
[19]CHENG R, JIN Y C, OLHOFER M, et al. A reference vector guided evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2016,20(5):773-791.
[20]ZITZLER E, DEB K, THIELE L. Comparison of multiobjective evolutionary algorithms: Empirical results[J]. Evolutionary Computation, 2000,8(2):173-195.
[21]DEB K, THIELE L, LAUMANNS M, et al. Scalable multi-objective optimization test problems[C]// Proceedings of the 2002 Congress on Evolutionary Computation. 2002:825-830.
[22]ALI M, SIARRY P, PANT M. An efficient differential evolution based algorithm for solving multi-objective optimization problems[J]. European Journal of Operational Research, 2012,217(2):404-416.
[23]LIN Q Z, LI J Q, DU Z H, et al. A novel multi-objective particle swarm optimization with multiple search strategies[J]. European Journal of Operational Research, 2015,247(3):732-744.
[24]TIAN Y, ZHANG X Y, CHENG R, et al. Guiding evolutionary multiobjective optimization with generic front modeling[J]. IEEE Transactions on Cybernetics, 2018,50(3):1106-1119.
[25]魏立新,赵默林,范锐,等. 基于改进鲨鱼优化算法的自抗扰控制参数整定[J]. 控制与决策, 2019,34(4):816-820.
[26]王龙达,王兴成,刘罡,等. 基于偏好的列车运行过程多目标鲨鱼优化算法[J]. 仪器仪表学报, 2020,41(10):245-256.
|