[1] DUFRESNE E, HARRINGTON H A, RAMAN D V. The geometry of sloppiness[J]. Metric Geometry, 2016,arXiv:1608.05679.
[2] TAFINTSEVA V, TNDEL K, PONOSOV A, et al. Global structure of sloppiness in a nonlinear model[J]. Journal of Chemometrics, 2015,28(8):645-655.
[3] QUINN K N, WILBER H, TOWNSEND A, et al. Chebyshev approximation and the global geometry of sloppy models[J]. Numerical Analysis, 2018,arXiv:1809.08280.
[4] TRANSTRUM M K, MACHTA B B, SETHNA J P. The geometry of nonlinear least squares with applications to sloppy models and optimization[J]. Physical Review E Statal Nonlinear & Soft Matter Physics, 2010,83:036701.
[5] TAN Q, GHOSAL S. Bayesian analysis of mixed-effect regression models driven by ordinary differential equations[J]. Sankhya B, 2019,83:3-29.
[6] KIMURA S, IDE K, KASHIHARA A, et al. Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm[J]. Bioinformatics, 2005,21(7):1154-1163.
[7] 王红,王希诚,李克秋. 混合Kriging代理模型的高维参数估计优化算法[J]. 大连理工大学学报, 2015(2):215-222.〖HJ1.0mm〗
[8] 高月华,王希诚. 基于Kriging代理模型的多点加点序列优化方法[J]. 工程力学, 2012,29(4):90-95.
[9] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016,37(11):3197-3225.
[10]SIMPSON T W, POPLINSKI J D, KOCH P N, et al. Meta models for computer-based engineering design: Survey and recommendations[J]. Engineering with Computers, 2001,17(2):129-150.
[11]SHIMOYAMA K, JEONG S, OBAYASHI S. Kriging-surrogate-based optimization considering expected hyper volume improvement in non-constrained many-objective test problems[C]// 2013 IEEE Congress on Evolutionary Computation. 2013:658-665.
[12]VIANA F A C, HAFTKA R T. Surrogate-based optimization with parallel simulations using the probability of improvement[C]// The 13th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. 2010:13-15.
[13]SCHONLAU M, WELCH W J, JONES D R. Global versus local search in constrained optimization of computer models[J]. Lecture Notes-monograph Series, 1998,34:11-25.
[14]SASENA M J, PAPALAMBROS P, GOOVAERTS P. Exploration of meta modeling sampling criteria for constrained global optimization[J]. Engineering Optimization, 2002,34(3):263-278.
[15]BOTTOU L. SGD: Stochastic Gradient Descent[EB/OL]. (2018-09-03)[2020-10-27]. http://leon.bottou.org/projects/sgd.
[16]知乎. 一个框架看懂优化算法之异同[EB/OL]. (2018-09-03)[2020-10-27]. https://zhuanlan.zhihu.com/p/32262540.
[17]DU S S, JIN C, LEE J D, et al. Gradient descent can take exponential time to escape saddle points[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017:1067-1077.
[18]NESTEROV Y. A method of solving a convex programming problem with convergence rate o(1/k2)[J]. Soviet Mathematics Doklady, 1983,27(2):372-376.
[19]SUTSKEVER I, MARTENS J, DAHL G, et al. On the importance of initialization and momentum in deep learning[C]// Proceedings of the 30th International Conference on International Conference on Machine Learning. 2013,28:1139-1147.
[20]REDDI S J, KALE S, KUMAR S. On the convergence of Adam and beyond[J]. Machine Learning, 2019,arXiv:1904.09237.
[21]KESKAR N S, SOCHER R. Improving generalization performance by switching from Adam to SGD[J]. Machine Learning, 2017,arXiv:1712.07628.
[22]YANG K, BAI H J, OUYANG Q, et al. Finding multiple target optimal intervention in disease related molecular network[J]. Molecular Systems Biology, 2008,4(228),DOI:10.1038/msb.2008.60.
[23]BROYDEN C G. Quasi-Newton methods and their application to function mini misation[J]. Mathematics of Computation, 1967,21(99):368-368.
[24]EGEAJ A, RODRIGUES-FERNADEZ M, BANGA J R, et al. Scatter search for chemical and bioprocess optimization[J]. Journal of Global Optimization, 2007,37(3):481-503.
|