[1] 单帅帅,马清峰,谢雯鑫. 基于小波包能量谱和ICA的模拟电路故障特征提取方法[J]. 电子测量技术, 2021,44(18):19-23. [2] HOU H, JI H.Improved multiclass support vector data description for planetary gearbox fault diagnosis[J]. Control Engineering Practice,2021,114(3). DOI: 10.1016/j.conengprac.2021.104867. [3] 常玉清,康孝云,王福利,等. 基于贝叶斯网络的磨煤机过程异常工况诊断模型实时更新方法[J]. 仪器仪表学报, 2021,42(8):52-61. [4] 赵亚楠,郭华玲,郑宾,等. 基于KPCA和LSSVM的表面缺陷深度识别[J]. 激光杂志, 2021,42(3):74-78. [5] LEMOS T, CAMPOS L F, MELO A, et al.Echo state network based soft sensor for monitoring and fault detection of industrial processes[J]. Computers & Chemical Engineering, 2021,155:107512. [6] 刘俊,章磊. 基于半导体激光干涉技术的电气设备状态检测研究[J]. 激光杂志, 2021,42(5):52-56. [7] 李立力,刘纲,张亮亮,等. 加权PCA残差空间的加速度传感器故障诊断[J]. 振动、测试与诊断, 2021,41(5):1007-1013. [8] RATO T, REIS M, SCHMITT E, et al.A systematic comparison of PCA-based statistical process monitoring methods for high-dimensional, time-dependent processes[J]. AIChE Journal, 2016,62(5):1478-1493. [9] LEE J M, YOO C K, LEE I B.Fault detection of batch processes using multiway kernel principal component analysis[J]. Computers & Chemical Engineering, 2004,28(9):1837-1847. [10] WANG X G, HUANG L W, ZHANG Y W.Modeling and monitoring of nonlinear multi-mode processes based on similarity measure-KPCA[J]. Journal of Central South University, 2017,24(3):665-674. [11] BENCHEIKH F, HARKAT M F, KOUADRI A, et al.New reduced kernel PCA for fault detection and diagnosis in cement rotary kiln[J]. Chemometrics and Intelligent Laboratory Systems, 2020,204. DOI: 10.1016/j.chemolab.2020.104091. [12] PANI A K.Non-linear process monitoring using kernel principal component analysis: A review of the basic and modified techniques with industrial applications[J]. Brazilian Journal of Chemical Engineering, 2022,39(2):327-344. [13] LIU Y, ZHOU H.MSVM recognition model for dynamic process abnormal pattern based on multi-kernel functions[J]. Journal of Systems Science and Information, 2014,2(5):473-480. [14] YAN K, SHEN W, MULUMBA T, et al.ARX model based fault detection and diagnosis for chillers using support vector machines[J]. Energy and Buildings, 2014,81:287-295. [15] WU C H, TZENG G H, LIN R H.A Novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression[J]. Expert Systems with Applications, 2009,36(3):4725-4735. [16] ZENG Z, ZHENG W, ZHAO R, et al.The comprehensive design and optimization of the post-fault grid-connected three-phase PWM rectifier[J]. IEEE Transactions on Industrial Electronics, 2016,63(3):1629-1642. [17] LI W M, ZHOU X K, YANG C, et al.Multi-objective optimization algorithm based on characteristics fusion of dynamic social networks for community discovery[J]. Information Fusion, 2022,79(C):110-123. [18] MUSIKAWAN P, KONGSOROT Y, SO-IN C, et al. An enhanced obstacle-aware deployment scheme with an opposition-based competitive swarm optimizer for mobile WSNs[J], Expert Systems with Applications, 2022,189: 116035.1-116035.14. [19] KASHYAP A K, PARHI D R.Multi-objective trajectory planning of humanoid robot using hybrid controller for multi-target problem in complex terrain[J]. Expert Systems with Applications, 2021,179(1). DOI: 10.1016/j.eswa.2021.115110. [20] WANG Y L, LI L S, HU Z.Swarm intelligence optimization algorithm[J]. Computer Technology and Development, 2008. [21] 陈红岩,刘嘉豪,盛伟铭,等. 基于GWO的SVM在红外甲烷传感器测量误差分析中的应用[J]. 计量学报, 2021,42(9):1244-1249. [22] 马砺,张鹏宇,郭睿智,等. 巷道火灾密闭过程烟气温度预测的GA-SVM模型[J]. 中国矿业大学学报, 2021,50(4):641-648. [23] XUE J K, SHEN B.A novel swarm intelligence optimization approach: Sparrow search algorithm[J]. Systems Science & Control Engineering, 2020,8(1):22-34. [24] WESOLKOWSKI S.Using kernel principal components for color image segmentation[C]// Proceedings of SPIE - The International Society for Optical Engineering. 2002,4790:1-10. [25] YAN X F, GE H W, YAN Q S.SVM with RBF kernel and its application research[J]. Computer Engineering and Design, 2006. [26] WANG Q, CHU L, PENG F, et al.Contribution of aquatic products consumption to total human exposure to PAHs in Eastern China: The source matters[J]. Environmental Pollution, 2020,266. DOI: 10.1016/j.envpol.2020.115339. [27] ONEL M, KIESLICH C A, PISTIKOPOULOS E N.A nonlinear support vector machine-based feature selection approach for fault detection and diagnosis: Application to the tennessee eastman process[J]. AIChE Journal, 2019,65(3):992-1005. |