计算机与现代化 ›› 2023, Vol. 0 ›› Issue (07): 54-60.doi: 10.3969/j.issn.1006-2475.2023.07.010

• 网络与通信 • 上一篇    下一篇

基于感知注意力的深度交叉网络推荐模型

  

  1. (重庆师范大学计算机与信息科学学院,重庆 401331)
  • 出版日期:2023-07-26 发布日期:2023-07-27
  • 作者简介:崔少国(1974—),男,湖北十堰人,教授,博士,研究方向:大数据与人工智能,医学图像处理,E-mail: csg@cqnu.edu.cn; 通信作者:张岗(1997—),男,硕士研究生,研究方向:推荐系统,E-mail: 545424934@qq.com; 王奥迪(1997—),男,硕士研究生,研究方向:人工智能,E-mail: 2082109704@qq.com。
  • 基金资助:
    国家自然科学基金资助项目(62003065); 重庆市科技局自然基金资助项目(2022NSCQ-MSX2933, 2022TFII-OFX0262, cstc2019jscx-mbdxX0061); 教育部人文社科规划基金资助项目(22YJA870005); 重庆市教委重点项目(KJZD-K202200510); 重庆市社会科学规划项目(2022NDYB119); 重庆师范大学人才基金资助项目(20XLB004)

Deep Cross Network Recommendation Model Based on Attention Perception

  1. ( School of Computer and Information Sciences, Chongqing Normal University, Chongqing 401331, China)
  • Online:2023-07-26 Published:2023-07-27

摘要: 推荐系统中融合低、高阶特征组合对预测的点击通过率至关重要。本文设计一种基于感知注意力的深度交叉网络推荐模型(Attention Deep Cross IO-awre Factorization Machine, ADCIOFM)。传统推荐模型通过注意力因子分解机和深度交叉网络分别对低、高阶特征进行提取,然而注意力因子分解机对低阶组合特征的提取容易忽略隐藏的字段信息,深度交叉网络挖掘用户兴趣的多样性偏弱。因此,本文通过融入感知辅助矩阵来增强注意力机制估计低阶组合特征权重的表示能力。通过融入多头注意力机制,对不同子空间的特征深度进行提取,以解决深度交叉网络挖掘用户兴趣多样性的不足。最后,将低、高阶组合特征进行有效融合共同进行推荐。通过在 Criteo、Movielens-100K 这2个数据集上进行实验对比,以AUC指标进行评估,相较于基准模型有着0.0087和0.0159的提升。

关键词: 点击通过率, 感知注意力因子分解机, 交叉网络, 多头注意力机制, 深度神经网络

Abstract:  The combination of low-order and high-order features in the recommendation system is crucial to the predicted click-through rate. This paper designs an Attention Deep Cross IO-awre Factorization Machine (ADCIOFM) model. The traditional recommendation model extracts low-order and high-order features through the attention factor decomposer and deep cross-network respectively. However, the hidden field information is easily ignored when the attention factor decomposer extracts low-order combined features, and the diversity of user interests in deep cross-network mining is weak. Therefore, this paper enhances the representation ability of attention mechanism to estimate the low-order combined feature weight by incorporating the perceptual auxiliary matrix. The feature depth of different subspaces is extracted by integrating a multi-head attention mechanism to solve the problem of user interest diversity in deep cross-network mining. Finally, the low-order and high-order combined features are effectively fused for a recommendation. Through experimental comparison on Criteo and Movielens-100K data sets, the AUC index is used for evaluation, which is 0.0087 and 0.0159 higher than the benchmark model.

Key words: click-through rate, perceived attention factor decomposer, cross network, multi-head attention mechanism, deep neural network

中图分类号: