[1] CHENG D S, CRISTANI M.Person re-identification[M]// Person Re-identification by Articulated Appearance Matching. London: Springer, 2014:139-160. [2] CHEN Y C, ZHU X, ZHENG W S, et al.Person re-identification by camera correlation aware feature augmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018,40(2):392-408. [3] LIN Y, DONG X, ZHENG L, et al.A bottom-up clustering approach to unsupervised person re-identification[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019,33(1):8738-8745. [4] JIN X, LAN C, ZENG W, et al.Global distance distributions separation for unsupervised person reidentification[C]// Proceedings of IEEE International Conference on Computer Vision. 2020:5142-5150. [5] ISOLA P, ZHU J, ZHOU T, et al.Image-to-image translation with conditional adversarial networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:5967-5976. [6] DENG W, ZHENG L, YE Q, et al.Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:994-1003. [7] ZHU J, PARK T, ISOLA P, et al.Unpaired image-to-image translation using cycle-consistent adversarial networks[C]// 2017 IEEE International Conference on Computer Vision (ICCV). 2017:2242-2251. [8] WEI L, ZHANG S, GAO W, et al.Person transfer gan to bridge domain gap for person re-identification[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:79-88. [9] YANG F, LI K, ZHONG Z, et al.Asymmetric co-teaching for unsupervised cross-domain person re-identification[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020,34(7):12597-12604. [10] GE Y, CHEN D, LI H.Mutual mean-teaching: Pseudo label refinery for unsupervised domain adaptation on person re-identification[J]. arXiv preprint arXiv:2001.01526, 2020. [11] ZHENG L, SHEN L, TIAN L, et al.Scalable person re-identification: A benchmark[C]// 2015 IEEE International Conference on Computer Vision (ICCV). 2015:1116-1124. [12] RISTANI E, SOLERA F, ZOU R S, et al. Performance measures and a data set for multi-target, multi-camera tracking[J]. arXiv preprint arXiv:1609.01775, 2016. [13] CHEN H, LAGADEC B, BRÉMOND F. Enhancing diversity in teacher-student networks via asymmetric branches for unsupervised person re-identification[C]// 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). 2021:1-10. [14] PAN X, LUO P, SHI J, et al.Two at once: Enhancing learning and generalization capacities via IBN-Net[C]// Computer Vision - ECCV 2018. 2018:484-500. [15] GE Y, ZHU F, CHEN D, et al. Structured domain adaptation with online relation regularization for unsupervised person re-ID[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022,PP(99):1-14. [16] ZHENG Z D, ZHENG L, YANG Y.Unlabeled samples generated by gan improve the person re-identification baseline in vitro[C]// IEEE International Conference on Computer Vision. 2017:660-669. [17] KHAN K, REHMAN S U, AZIZ K, et al.DBSCAN: Past, present and future[C]// The 5th International Conference on the Applications of Digital Information and Web Technologies (ICADIWT 2014). 2014:232-238. [18] HE K, FAN H, WU Y, et al.Momentum contrast for unsupervised visual representation learning[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020:9726-9735. [19] HADSELL R, CHOPRA S, LECUN Y.Dimensionality Reduction by learning an invariant mapping[C]// 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06). 2006:1735-1742. [20] ZHONG Z, ZHENG L, LUO Z, et al.Learning to adapt invariance in memory for person re-identification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021,43(8):2723-2738. [21] FU Y, WEI Y, WANG G, et al.Self-similarity grouping: A simple unsupervised cross domain adaptation approach for person re-identification[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). 2019:6111-6120. [22] LI Y, YANG F, LIU Y, et al.Adaptation and re-identification network: An unsupervised deep transfer learning approach to person re-identification[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 2018:285-2856. [23] WANG D, ZHANG S.Unsupervised person re-identification via multi-label classification[C]// Proceedings of the IEEE/ CVF Conference on Computer Vision and Pattern Recognition. 2020:10981-10990. [24] ZHAI Y P, YE Q X, LU S J, et al.Multiple expert brainstorming for domain adaptive person re-identification[C]// European Conference on Computer Vision. 2020:594-611. [25] SONG L, WANG C, ZHANG L, et al.Unsupervised domain adaptive re-identification: Theory and practice[J]. Pattern Recognition, 2020,102(3). DOI:10.1016/j.patcog.2019.107173. [26] WANG W, ZHAO F, LIAO S, et al.Attentive waveblock: Complementarity-enhanced mutual networks for unsupervised domain adaptation in person re-identification and beyond[J]. IEEE Transactions on Image Processing, 2022, 30(5):1092-1108. |