[1] WANG L, ZHENG C, DAI Q, et al. A comparative study of pixel level and region level classification of land use types using QuickBird imagery[C]// 2010 2nd IITA International Conference on Geoscience and Remote Sensing. 2010:219-222.
[2] ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,34(11):2274-2282.
[3] GIRAUD R, TA V, BUGEAU A, et al. SuperPatchMatch: An algorithm for robust correspondences using superpixel patches[J]. IEEE Transactions on Image Processing, 2017,26(8):4068-4078.
[4] ZHAO W, JIAO L, MA W, et al. Superpixel-based multiple local CNN for panchromatic and multispectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017,55(7):4141-4156.
[5] LI G, LI L, ZHU H, et al. Adaptive multiscale deep fusion residual network for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019,57(11):8506-8521.
[6] HE Z, SHI Q, LIU K, et al. Object-oriented mangrove species classification using hyperspectral data and 3-D siamese residual network[J]. IEEE Geoscience and Remote Sensing Letters, 2020,17(12):2150-2154.
[7] MARINONI A, GAMBA P. Unsupervised data driven feature extraction by means of mutual information maximization[J]. IEEE Transactions on Computational Imaging, 2017,3(2):243-253.
[8] HUANG S, ZHANG H, PIURICA A. Hybrid-hypergraph regularized multiview subspace clustering for hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022,60. DOI:10.1109/TGRS.2021.3074184.
[9] BREIMAN L, FRIEDMAN J H, OLSHEN R, et al. Classification and Regression Trees (CART)[M]. Wiley, 1984. DOI:10.2307/2530946.
[10]BREIMAN L. Random forests[J]. Machine Learning, 2001,45:5-32.
[11]LI T, ZHANG J, ZHANG Y. Classification of hyperspectral image based on deep belief networks[C]// 2014 IEEE International Conference on Image Processing (ICIP). 2014:5132-5136.
[12]ZHONG P, GONG Z, LI S, et al. Learning to diversify deep belief networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017,55(6):3516-3530.
[13]CHEN Y, LIN Z, ZHAO X, et al. Deep learning-based classification of hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014,7(6):2094-2107.
[14]XING C, MA L, YANG X. Stacked denoise autoencoder based feature extraction and classification for hyperspectral images[J]. Journal of Sensors, 2016. DOI:10.1155/2016/3632943.
[15]ZHAO C, WAN X, ZHAO G, et al. Spectral-spatial classification of hyperspectral imagery based on stacked sparse autoencoder and random forest[J]. European Journal of Remote Sensing, 2017,50(1):47-63.
[16]MAGGIORI E, TARABALKA Y, CHARPIAT G, et al. Convolutional neural networks for large-scale remote-sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017,55(2):645-657.
[17]JIAO L, LIANG M, CHEN H, et al. Deep fully convolutional network-based spatial distribution prediction for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017,55(10):5585-5599.〖HJ0.8mm〗
[18]JI S, ZHANG C, XU A, et al. 3D convolutional neural networks for crop classification with multi-temporal remote sensing images[J]. Remote Sensing, 2018,10(1). DOI:10.3390/rs10010075.
[19]LIU X, JIAO L C, ZHAO J Q, et al. Deep multiple instance learning-based spatial-spectral classification for PAN and MS imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018,56(1):461-473.
[20]HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:770-778.
[21]CHAURASIA A, CULURCIELLO E. LinkNet: Exploiting encoder representations for efficient semantic segmentation[C]// 2017 IEEE Visual Communications and Image Processing (VCIP). 2017. DOI:10.1109/VCIP.2017.8305148.
[22]MIRZAPOUR F, GHASSEMIAN H. Object-based multispectral image segmentation and classification[C]// The 7th International Symposium on Telecommunications (IST'2014). 2014:430-435.
[23]LIANG W, WU Y, LI M, et al. High-resolution SAR image classification using context-aware encoder network and hybrid conditional random field model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020,58(8):5317-5335.
[24]GU Z, CHENG J, FU H, et al. CE-Net: Context encoder network for 2D medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2019,38(10):2281-2292.
[25]HU Z, ZHANG Q, ZOU Q, et al. Stepwise evolution analysis of the region-merging segmentation for scale parameterization[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018,11(7):2461-2472.
[26]HU Z, SHI T, WANG C, et al. Scale-sets image classification with hierarchical sample enriching and automatic scale selection[J]. International Journal of Applied Earth Observation and Geoinformation, 2021,105(4). DOI:10.1016/j.jag.2021.102605.
[27]SIMONYAN K, ZISSERMAN A. Very Deep Convolutional Networks for Large-Scale Image Recognition[R]. Google Research, 2014.
[28]ZHONG Z, LI J, LUO Z, et al. Spectral-spatial residual network for hyperspectral image classification: A 3-D Deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018,56(2):847-858.
[29]HUANG Y, WEI J, TANG W, et al. Pyramid convolutional neural networks and bottleneck residual modules for classification of multispectral images[C]// IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium. 2020:1949-1952.
|