[1] |
MIHMANLI M, IDIZ U O, KAYA C. Current status of diagnosis and treatment of hepatic echinococcosis[J]. World Journal of Hepatology, 2016,8(28):1169-1181.
|
[2] |
MCMANUS D P, GRAY D J, ZHANG W, et al. Diagnosis, treatment, and management of echinococcosis[J]. BMJ Clinical Research, 2012,344(7861):39-44.
|
[3] |
雷军强,陈勇,王晓慧,等. 肝包虫病的CT和MR诊断[J]. 中国医学影像技术, 2010,26(2):291-293.
|
[4] |
QUCUO N, WU G J, HE R F, et al. Knowledge, attitudes and practices regarding echinococcosis in Xizang autonomous region, China[J]. BMC Public Health, 2020,20(1):1-9.
|
[5] |
ZHU G H, CHEN S X, SHI B Y, et al. Dynamics of echinococcosis transmission among multiple species and a case study in Xinjiang, China[J]. Chaos, Solitons & Fractals, 2019,127:103-109.
|
[6] |
排孜丽耶·尤山塔依,严传波,木拉提·哈米提,等. 基于特征融合的肝包虫病CT图像识别[J]. 北京生物医学工程, 2019,38(4):400-406.
|
[7] |
LI H , SONG T , SHAO Y , et al. A cross-sectional survey of performance of chemotherapy for echinococcosis in Xinjiang Uygur autonomous region[J].Chinese Medical Journal , 2015, 36(9):1002.
|
[8] |
张壮志,张文宝,石保新,等. 我国包虫病防控及其面临的困难[J]. 兽医导刊, 2011(6):27-29.
|
[9] |
张世清. 我国血吸虫病传播阻断后流行特征及防控策略思考[J]. 热带病与寄生虫学, 2020,18(2):70-74.
|
[10] |
贾树开. 深度学习在图像分割中的应用--基于深度学习的甲状腺结节超声图像分割[D]. 成都:电子科技大学, 2020.
|
[11] |
WANG Y, ZHANG X, BARTHOLOMOT B, et al. Classification, follow-up and recurrence of hepatic cystic echinococcosis using ultrasound images[J]. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2003,97(2):203-211.
|
[12] |
张娴,刘玉林,高智勇. 深度学习在医学影像中的应用研究进展[J]. 临床放射学杂志, 2021,40(10):2041-2044.
|
[13] |
邓卓,苏秉华,张凯. 深度学习算法在乳腺肿瘤诊断中的应用研究[J]. 中国医疗设备, 2020,35(9):60-64.
|
[14] |
张佳,孙凯. 人工智能深度学习在心血管影像诊断中的研究进展[J]. 中国医学装备, 2020,17(4):183-186.
|
[15] |
刘明,黄继风. 深度学习在音频信号处理中的研究探析[J]. 信息通信, 2020(3):144-146.
|
[16] |
ZHANG J, ZHAO J, LIN H N, et al. High-Speed chemical imaging by Dense-Net learning of femtosecond stimulated raman scattering[J]. Journal of Physical Chemistry Letters, 2020,11(20):8573-8578.
|
[17] |
WEI X, ZHANG H T, LIU S F, et al. Pedestrian detection in underground mines via parallel feature transfer network[J]. Pattern Recognition, 2020,103. DOI:10.1016/j.patcog.2020.107195.
|
[18] |
OLIWA T, FURNER B, SCHMITT J, et al. Development of a predictive model for retention in HIV care using natural language processing of clinical notes[J]. Journal of the American Medical Informatics Association, 2020,28(1):104-112.
|
[19] |
施俊,汪琳琳,王珊珊,等. 深度学习在医学影像中的应用综述[J]. 中国图象图形学报, 2020,25(10):1953-1981.
|
[20] |
KARAYEGEN G, AKSAHIN M F. Brain tumor prediction on MR images with semantic segmentation by using deep learning network and 3D imaging of tumor region[J]. Biomedical Signal Processing and Control, 2021,66. DOI:10.1016/j.bspc.2021.102458.
|
[21] |
SONG Y, ZHENG S J, LI L, et al. Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with CT images[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021,18(6):2775-2780.
|
[22] |
ROY S, MENAPACE W, OEI S, et al. Deep learning for classification and localization of COVID-19 markers in point-of-care lung ultrasound[J]. IEEE Transactions on Medical Imaging, 2020,39(8):2676-2687.
|
[23] |
APOSTOLOPOULOS I D, MPESIANA T A. Covid-19: Automatic detection from X-ray images utilizing transfer learning with convolutional neural networks[J]. Physical and Engineering Sciences in Medicine, 2020,43(2):635-640.
|
[24] |
NING Y, HAN Z Y, ZHONG L, et al. DRAN: Deep recurrent adversarial network for automated pancreas segmentation[J]. IET Image Processing, 2020,14(6):1091-1100.
|
[25] |
HIRRA I, AHMAD M, HUSSAIN A, et al. Breast cancer classification from histopathological images using patch-based deep learning modeling[J]. IEEE Access, 2021,9:24273-24287.
|
[26] |
FANG Z Y, REN J C, MARSHALL S, et al. Topological optimization of the DenseNet with pretrained-weights inheritance and genetic channel selection[J]. Pattern Recognition, 2021,109. DOI:10.1016/j.patcog.2020.107608.
|
[27] |
SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2016,31(1):4278-4284.
|
[28] |
LEI H J, HAN T, ZHOU F, et al. A deeply supervised residual network for HEp-2 cell classification via cross-modal transfer learning[J]. Pattern Recognition, 2018,79:290-302.
|
[29] |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[C]// 2017 IEEE International
|