[1] |
MAHENDRAN N, VINCENT D R.A deep learning framework with an embedded-based feature selection approach for the early detection of the Alzheimer's disease[J]. Computers in Biology and Medicine, 2022,141. DOI: 10.1016/j.compbiomed.2021.105056.
|
[2] |
SRIVASTAVA S, AHMAD R, KHARE S K.Alzheimer’s disease and its treatment by different approaches: A review[J]. European Journal of Medicinal Chemistry, 2021,216(10). DOI: 10.1016/j.ejmech.2021.113320.
|
[3] |
LEI B, LIANG E, YANG M, et al.Predicting clinical scores for alzheimer’s disease based on joint and deep learning[J]. Expert Systems with Applications, 2021,187(3). DOI: 10.1016/j.eswa.2021.115966.
|
[4] |
PORSTEINSSON A P, ISAACSON R S, KNOX S, et al.Diagnosis of early alzheimer’s disease: Clinical practice in 2021[J]. The Journal of Prevention of Alzheimer s Disease, 2021,8(3):371-386.
|
[5] |
YU H, YANG L T, ZHANG Q, et al.Convolutional neural networks for medical image analysis: State-of-the-art, comparisons, improvement and perspectives[J]. Neurocomputing, 2021,444(9):92-110.
|
[6] |
LIU M, LI F, YAN H, et al.A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease[J]. NeuroImage, 2019,208(5). DOI: 10.1016/j.neuroimage.2019.116459.
|
[7] |
PLANT C, TEIPEL S J, OSWALD A, et al.Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's disease[J]. NeuroImage, 2009,50(1):162-174.
|
[8] |
韩坤,潘海为,张伟,等. 基于多模态医学图像的Alzheimer病分类方法[J]. 清华大学学报(自然科学版), 2020,60(8):664-671.
|
[9] |
SUK H, LEE S, SHEN D, et al.Deep ensemble learning of sparse regression models for brain disease diagnosis[J]. Medical Image Analysis, 2017,37:101-113.
|
[10] |
林伟铭,高钦泉,杜民. 卷积神经网络诊断阿尔兹海默症的方法[J]. 计算机应用, 2017,37(12):3504-3508.
|
[11] |
刘张,郭旭东,张璐璐. 基于EfficientNet的胶囊内镜图像多病灶协同检测[J]. 智能计算机与应用, 2021,11(11):157-161.
|
[12] |
TAN M, LE Q V.EfficientNet: Rethinking model scaling for convolutional neural networks[J]. arXiv preprint arXiv:1905.11946, 2019.
|
[13] |
WOO S, PARK J, LEE J, et al.CBAM: Convolutional block attention module[C]// Computer Vision - ECCV 2018. 2018:3-19.
|
[14] |
LIN H, JEGELKA S. ResNet with one-neuron hidden layers is a Universal Approximator[J]. arXiv preprint arXiv:1806.10909, 2018.
|
[15] |
HUANG Y, CHENG Y, BAPNA A, et al. GPipe: Efficient training of giant neural networks using pipeline parallelism[J]. arXiv preprint arXiv:1811.06965, 2018.
|
[16] |
EITEL F, SCHULZ M, SEILER M, et al. Promises and pitfalls of deep neural networks in neuroimaging-based psychiatric research[J]. arXiv preprint arXiv:2301.08525, 2023.
|
[17] |
IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size[J]. arXiv preprint arXiv:1602.07360, 2016.
|
[18] |
HOWARD A G, ZHU M, CHEN B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.
|
[19] |
ZHANG X, ZHOU X, LIN M, et al.ShuffleNet: An extremely efficient convolutional neural network for mobile devices[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:6848-6856.
|
[20] |
马岽奡,唐娉,赵理君,等. 深度学习图像数据增广方法研究综述[J]. 中国图象图形学报, 2021,26(3):487-502.
|
[21] |
ZHANG H, CISSE M, DAUPHIN Y N, et al. Mixup: Beyond empirical risk minimization[J]. arXiv preprint arXiv:1710.09412, 2017.
|
[22] |
LIN T, GOYAL P, GIRSHICK R, et al.Focal loss for dense object detection[C]// 2017 IEEE International Conference on Computer Vision (ICCV). 2017:2999-3007.
|
[23] |
冯毅博,仇大伟,曹慧,等. 基于深度可分离稠密网络的新型冠状病毒肺炎X线图像检测方法研究[J]. 生物医学工程学杂志, 2020,37(4):557-565.
|
[24] |
ISLAM J, ZHANG Y.Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural networks[J]. Brain Informatics, 2018,5(2):1-14.
|
[25] |
FARID A A, SELIM G I, KHATER H A A. Applying artificial intelligence techniques to improve clinical diagnosis of Alzheimer's disease[J]. European Journal of Engineering Science and Technology, 2020,3(2):58-79.
|
[26] |
ABUHMED T, EL-SAPPAGH S, ALONSO J M.Robust hybrid deep learning models for Alzheimer’s progression detection[J]. Knowledge-Based Systems, 2020,213(4). DOI: 10.1016/j.knosys.2020.106688.
|
[27] |
SUDHARSAN M, THAILAMBAL G. Alzheimer’s disease prediction using machine learning techniques and principal component analysis (PCA)[J]. Materials Today: Proceedings, 2021(3). DOI: 10.1016/j.matpr.2021.03.061.
|
[28] |
SELVARAJU R R, COGSWELL M, DAS A, et al.Grad-CAM: Visual explanations from deep networks via gradient-based localization[C]// 2017 IEEE International Conference on Computer Vision (ICCV). 2017:618-626.
|