[1] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004,60(2):91-110.
[2] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]// IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005:886-893.
[3] LIENHART R, MAYDT J. An extended set of Haar-like features for rapid object detection[C]// Proceedings of International Conference on Image Processing. 2002. DOI:10.1109/ICIP.2002.1038171.
[4] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[C]// Advances in Neural Information Processing Systems. 2012:1097-1105.
[5] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// IEEE Conference on Computer Vision and Pattern Recognition. 2014:580-587.
[6] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014,37(9):1904-1916.
[7] GIRSHICK R B. Fast R-CNN[C]// International Conference on Computer Vision(ICCV). 2015:1440-1448.
[8] UIJLINGS J R R, SANDE K E, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013,104(2):154-171.
[9] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1137-1149.
[10]LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]// European Conference on Computer Vision. 2016:21-37.
[11]LAW H, DENG J. CornerNet: Detecting objects as paired keypoints[J]. International Journal of Computer Vision, 2020,128:642-656.
[12]DUAN K W, BAI S, XIE L X, et al. CenterNet: Keypoint triplets for object detection[C]// Proceedings of the IEEE International Conference on Computer Vision. 2019:6568-6577.
[13]ZHOU X Y, ZHUO J C, KRAHENBUHL P. Bottom-up object detection by grouping extreme and center points[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). 2019:850-859.
[14]闫凯,沈汀,陈正超,等. 基于深度学习的SSD模型尾矿库自动提取[J]. 中国科学院大学学报, 2020,37(3):360-367.
[15]苏蒙,李为. 一种基于SSD改进的目标检测算法[J]. 计算机与现代化, 2020(2):89-93.
[16]余保玲,虞松坤,孙耀然,等. 基于DeepPose和Faster RCNN的多目标人体骨骼节点检测算法[J]. 中国科学院大学学报, 2020,37(6):828-834.
[17]房靖晶,成金勇. 基于Faster R-CNN的办公用品目标检测[J]. 计算机与现代化, 2019(1):40-44.
[18]SAPP B, TASKARB. MODEC: Multimodal decomposable models for human pose estimation[C]// IEEE Conference on Computer Vision and Pattern Recognition. 2013:3674-3681.
[19]李龙,张重阳. 基于改进YOLOv3的车辆尾灯检测方法[J]. 计算机与现代化, 2021(7):89-94.
[20]REDMON J, FARHADI A. YOLOv3: An incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018.
[21]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
[22]HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:7132-7141.
[23]WOO S, PARK J, LEE J, et al. CBAM: Convolutional block attention module[C]// European Conference on Computer Vision. 2018:3-19.
[24]HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2021:13708-13717.
|