[1] |
NILSBACK M E, ZISSERMAN A. Automated flower classification over a large number of classes[C]// The 6th Indian Conference on Computer Vision, Graphics & Image Processing. 2008:722-729.
|
[2] |
ANGELOVA A, ZHU S. Efficient object detection and segmentation for fine-grained recognition[C]// 2013 IEEE Conference on Computer Vision and Pattern Recognition. 2013:811-818.
|
[3] |
ZHANG C, LIU J, LIANG C, et al. Image classification using Harrlike transformation of local features with coding residuals[J]. Signal Processing, 2013,93(8):2111-2118.
|
[4] |
TIAY T, BENYAPHAICHIT P, RIY-AMONGKOL P. Flower recognition system based on image processing[C]// 2014 3rd ICT International SeniorProject Conference(ICT-ISPC2014). 2014:99-102.
|
[5] |
谢晓东. 面向花卉图像的精细图像分类研究[D]. 厦门:厦门大学, 2014.
|
[6] |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998,86(11):2278-2324.
|
[7] |
ZAREMBA W, SUTSKEVER I, VINYALS O. Recurrent neural network regularization[J]. arXiv reprint arXiv:1409.2329, 2014.
|
[8] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G, et al. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017,60(6):84-90.
|
[9] |
SZEGEDY C, WEI L, JIA Y, et al. Going deeper with convolutions[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015:1-9.
|
[10] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. Computer Science, 2014,30(6):1409-1556.
|
[11] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for ima-ge recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
|
[12] |
HUANG G, LIU Z, KILIAN Q. Densely connected convolutional networks[C]// IEEE Computer Society. 2017:4700-4708.
|
[13] |
张川. 面向图像分类的深度残差网络优化结构研究[D]. 北京:中国科学院大学, 2016.
|
[14] |
王丽雯. 基于AlexNet的Oxford花卉识别方法[J]. 科技视界, 2017(14):83-83.
|
[15] |
高建瓴,王竣生,王许. 基于DenseNet的图像识别方法研究[J]. 贵州大学学报(自然科学版), 2019,36(6):58-62.
|
[16] |
郭玉荣,张珂,王新胜,等. 端到端双通道特征重标定DenseNet图像分类[J]. 中国图象图形学报, 2020,25(3):486-497.
|
[17] |
武慧琼,张素兰,张继福,等. 一种基于三支决策的花卉图像分类[J]. 小型微型计算机系统, 2019,40(7):1558-1563.
|
[18] |
叶鑫焱. 花卉图像精细分类的研究[D]. 福州:福州大学, 2018.
|
[19] |
MURABITO F, SPAMPINATO C, PALAZZO S, et al. Top-down saliency detection driven by visual classification[J]. Computer Vision and Image Understanding, 2018,40(7):1130-1141.
|
[20] |
任意平,夏国强,李俊丽. 基于优化 AlexNet的花卉识别[J]. 电子测量技术, 2020,43(19):94-98.
|
[21] |
张秋颖,金雪松. 基于卷积神经网络和迁移学习的花卉图像分类[J]. 哈尔滨商业大学学报(自然科学版), 2020,36(3):323-327.
|
[22] |
何文静,唐庭龙,吴义熔. 基于同步重建与分类的深度自编码的分类网络[J]. 长江信息通信, 2022,35(5):21-24.
|
[23] |
刘德建. 基于LeNet的花卉识别方法[J]. 电子技术与软件工程, 2015(23):13-14.
|
[24] |
尹红,符祥,曾接贤,等. 选择性卷积特征融合的花卉图像分类[J]. 中国图象图形学报, 2019,24(5):762-772.
|
[25] |
张力. 基于反馈信息的深度学习推荐算法研究[D]. 武汉:华中师范大学, 2019.
|
[26] |
邓远远,沈炜. 基于注意力反馈机制的深度图像标注模型[J]. 浙江理工大学学报(自然科学版), 2019,41(2):208-216.
|
[27] |
高欣. 卷积神经网络的改进及其在图像分类中应用研究[D]. 秦皇岛:燕山大学, 2021.
|
[28] |
曹春水. 深度卷积神经网络中反馈机制的计算建模及应用研究[D]. 合肥:中国科学技术大学, 2018.
|