[1] 吴小文. 油田油井检泵作业原因分析及治理对策[J]. 化学工程与装备, 2021(1):33-34.
[2] 周平,单长吉,刘丽丹. 抽油机井管杆偏磨检泵周期与其影响因素回归分析[J]. 东北电力大学学报, 2008,28(4):11-17.
[3] 任伟建,任欣元,王磊,等. 基于威布尔分布的油田机采井故障率研究[J]. 信息与控制, 2015,44(6):722-728.
[4] 张战敏. 抽油机井检泵周期可靠性预测模型与实际应用[J]. 价值工程, 2015,34(8):31-32.
[5] 赵廷峰,赵春艳,何帆,等. 抽油杆柱磨损分析与安全性评价[J]. 石油机械, 2017,45(8):65-70.
[6] 王旭东,李斌. 水平井抽油杆扶正器结构优化和疲劳寿命分析[J]. 西部探矿工程, 2016,28(12):30-31.
[7] 万夫,周兆明,张健,等. 基于在线检测数据优化连续油管疲劳寿命预测[J]. 钻采工艺, 2020,43(6):9-12.
[8] 赵岩龙,方正魁,邱子瑶,等. 基于长短时记忆网络的腐蚀工况下抽油杆剩余使用寿命预测[J]. 科学技术与工程, 2021,21(36):15429-15433.
[9] 侯延彬,陈炳均,高宪文. 基于GM-ELM的有杆泵抽油井故障诊断[J]. 东北大学学报(自然科学版), 2019,40(12):1673-1678.
[10]ZHANG R, ZHANG W, SHEN S, et al. Evaluation of the correlations between laboratory measured material properties with field cracking performance for asphalt pavement[J]. Construction and Building Materials, 2021,301. DOI:10.1016/j.conbuildmat.2021.124126.
[11]CHEN Y, XU P, CHU Y, et al. Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings[J]. Applied Energy, 2017,195:659-670.
[12]DENDI S V R, CHANNAPPAYYA S S. No-reference video quality assessment using natural spatiotemporal scene statistics[J]. IEEE Transactions on Image Processing, 2020,29:5612-5624.
[13]DHIMAN H S, DEB D, GUERRERO J M. Hybrid machine intelligent SVR variants for wind forecasting and ramp events[J].Renewable and Sustainable Energy Reviews, 2019,108:369-379.
[14]FEIZIZADEH B, ROODPOSHTI M S, BLASCHKE T, et al. Comparing GIS-based support vector machine kernel functions for landslide susceptibility mapping[J]. Arabian Journal of Geosciences, 2017,10(5). DOI:10.1007/s12517-017-2918-z.
[15]XIONG J, LIANG Q, WAN J, et al. The order statistics correlation coefficient and PPMCC fuse non-dimension in fault diagnosis of rotating petrochemical unit[J]. IEEE Sensors Journal, 2018,18(11):4704-4714.
[16]XIE C, KUMAR A. Finger vein identification using Convolutional Neural Network and supervised discrete hashing[J]. Pattern Recognition Letters, 2019,119:148-156.
[17]JUNG S, LEE J, CHO H, et al. Compton background elimination for in vivo x-ray fluorescence imaging of gold nanoparticles using convolutional neural network[J]. IEEE Transactions on Nuclear Science, 2020,67(11):2311-2320.〖HJ0.6mm〗
[18]ZHANG Y, LEE T S, LI M, et al. Convolutional neural network models of V1 responses to complex patterns[J]. Journal of Computational Neuroscience, 2019,46(1):33-54.
[19]LU Z, JIANG X, KOT A. Deep coupled ResNet for low-resolution face recognition[J]. IEEE Signal Processing Letters, 2018,25(4):526-530.
[20]BALTRUSCHAT I M, NICKISCH H, GRASS M, et al. Comparison of deep learning approaches for multi-label chest x-ray classification[J]. Scientific Reports, 2019,9(1). DOI:10.1038/s41598-019-42294-8.
[21]LU Z, BAI Y, CHEN Y, et al. The classification of gliomas based on a Pyramid dilated convolution resnet model[J]. Pattern Recognition Letters, 2020,133:173-179.
[22]LEE J, SHRIDHAR K, HAYASHI, et al. ProbAct: A probabilistic activation function for deep neural networks [J].arXiv preprint arXiv:1905.10761, 2019.
[23]ARIAV I, COHEN I. An end-to-end multimodal voice activity detection using waveNet encoder and residual networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2019,13(2):265-274.
[24]NOWAKOWSKA E, KORONACKI J, LIPOVETSKY S. Clusterability assessment for Gaussian mixture models[J]. Applied Mathematics and Computation, 2015,256(C):591-601.
[25]LORAH J, WOMACK A. Value of sample size for computation of the Bayesian Information Criterion (BIC) in multlevel modeling[J]. Behavior Research Methods, 2019, 51(1):440-450.
[26]YANG M, LAI C, LIN C. A robust EM clustering algorithm for Gaussian mixture models[J]. Pattern Recognition, 2012,45(11):3950-3961.
[27]LEI X, FANG Z. GBDTCDA: Predicting circRNA-disease associations based on gradient boosting decision tree with multiple biological data fusion[J]. International Journal of Biological Sciences, 2019,15(13):2911-2924.
[28]GUO F, LIU Z, HU W, et al. Gain prediction and compensation for subarray antenna with assembling errors based on improved XGBoost and transfer learning[J]. IET Microwaves, Antennas & Propagation, 2020,14(6). DOI:10.1049/iet-map.2019.0182.
[29]MA J, CHENG J C P, XU Z, et al. Identification of the most influential areas for air pollution control using XGBoost and Grid Importance Rank[J]. Journal of Cleaner Production,2020,274. DOI:10.1016/j.jclepro.2020.122835.
[30]ZHANG Z, HUANG Y, QIN R, et al. XGBoost-based on-line prediction of seam tensile strength for Al-Li alloy in laser welding: Experiment study and modelling[J]. Journal of Manufacturing Processes, 2021,64:30-44.
[31]NANDINI N, SHENGPING Y, ENRIQUE G. Impact of mechanical circulatory support on post-transplant stroke risk[J].The International Journal of Artificial Organs, 2021,44(10):675-680.
[32]WANG Z, ZHAN Z, KWONG S, et al. Adaptive granularity learning distributed particle swarm optimization for large-scale optimization[J]. IEEE Transactions on Cybernetics, 2020. DOI:10.1109/TCYB.2020.2977956.
[33]CHIRI H, ABASCAL A J, CASTANEDO S, et al. Mid-long term oil spill forecast based on logistic regression modelling of met-ocean forcings[J]. Marine Pollution Bulletin, 2019,146:962-976.
[34]王鑫,吴际,刘超,等. 基于LSTM循环神经网络的故障时间序列预测[J]. 北京航空航天大学学报, 2018,44(4):772-784.
|