[1] 刘坚,李树林,陈涛. 基于优化随机森林模型的滑坡易发性评价[J]. 武汉大学学报(信息科学版), 2018,43(7):1085-1091.
[2] 黄汀,白仙富,庄齐枫,等. 高分一号汶川极震区滑坡提取研究[J]. 测绘通报, 2018(2):67-71.
[3] 闫琦,李慧,荆林海,等. 灾后高分辨率遥感影像的地震型滑坡信息自动提取算法研究[J]. 激光与光电子学进展, 2017,54(11):410-420.
[4] 郭加伟,李永树,李政,等. 迁移学习支持下的高分影像山地滑坡灾害解译模型[J]. 测绘科学技术学报, 2016,33(5):496-501.
[5] BEHLING R, ROESSNER S, KAUFMANN H, et al. Automated spatiotemporal landslide mapping over large areas using rapidEye time series data[J]. Remote Sensing, 2014,6(9):8026-8055.
[6] 方教勇. 基于GIS的清平地区滑坡分布分形特征与危险性评价研究[D]. 成都:成都理工大学, 2018.
[7] OTHMAN A A, GLOAGUEN R. Automatic extraction and size distribution of landslides in Kurdistan Region, NE Iraq[J]. Remote Sensing, 2013,5(5):2389-2410.
[8] 贺素歌. SAR图像用于震害信息变化检测中的处理方法研究[D]. 北京:中国地震局地震预测研究所, 2013.
[9] JI S P, YU D W, SHEN C Y, et al. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks[J]. Landslides, 2020,17(6):1337-1352.
[10] PIRALILOU S T, SHAHABI H, JARIHANI B, et al. Landslide detection using multi-scale image segmentation and different machine learning models in the higher Himalayas[J]. Remote Sensing, 2019,11(21). DOI: 103390/rs11212575.
[11] CAN R, KOCAMAN S, GOKCEOGLU C. A convolutional neural network architecture for auto-detection of landslide photographs to assess citizen science and volunteered geographic information data quality[J]. ISPRS International Journal of Geo-Information, 2019,8(7). DOI:10.3390/ijgi8070300.
[12] GHORBANZADEH O, BLASCHKE T, GHOLAMNIA K, et al. Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection[J]. Remote Sensing, 2019,11(2). DOI: 10.3390/rs11020196.
[13]GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014:580-587.
[14]GIRSHICK R. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). 2015:1440-1448.
[15]REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1137-1149.
[16] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:936-944.
[17]HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020,42(2):386-397.
[18]LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multiBox detector[C]// Proceedings of the 2016 European Conference on Computer Vision. 2016:21-37.
[19]REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:779-788.
[20]LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV). 2017:2999-3007.
[21]MA J Q, SHAO W Y, YE H, et al. Arbitrary-oriented scene text detection via rotation proposals[J]. IEEE Transactions on Multimedia, 2018,20(11):3111-3122.
[22]YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[J]. arXiv preprint arXiv:1511.07122, 2015.
[23]HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:7132-7141.
[24]ZHANG Y L, LI K P, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]// Proceedings of the 2018 European Conference on Computer Vision. 2018:294-310.
[25]WOO S Y, PARK J C, LEE J Y, et al. CBAM: Convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision. 2018:3-19.
[26]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
[27]JIANG B R, LUO R X, MAO J Y, et al. Acquisition of localization confidence for accurate object detection[C]// Proceedings of the 2018 European Conference on Computer Vision. 2018:816-832.
[28]REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019:658-666.
|