[1] SMIT S, TOMASCH E, KOLK H, et al. Evaluation of a momentum based impact model in frontal car collisions for the prospective assessment of ADAS[J]. European Transport Research Review, 2019,11. DOI: 10.1186/s12544-018-0343-3.
[2] MOGELMOSE A, TRIVEDI M M, MOESLUND T B. Vision-based traffic sign detection and analysis for intelligent driver assistance systems: Perspectives and survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2012,13(4):1484-1497.
[3] GREENHALGH J, MIRMEHDI M. Real-time detection and recognition of road traffic signs[J]. IEEE Transactions on Intelligent Transportation Systems, 2012,13(4):1498-1506.
[4] CIRESAN D, MEIER U, MASCI J, et al. Multi-column deep neural network for traffic sign classification[J]. Neural Networks, 2012,32:333-338.
[5] 童英,杨会成. 基于改进卷积神经网络的实时交通标志检测方法[J]. 激光与光电子学进展, 2019,56(7):115-121.
[6] 马永杰,李雪燕,宋晓凤. 基于改进深度卷积神经网络的交通标志识别[J]. 激光与光电子学进展, 2018,55(12):244-251.
[7] 吴迪,屈宗顺,赵葵银,等. 基于HOGv-CLBP特征融合和ELM的交通标志识别[J]. 光电子·激光, 2020,31(6):621-627.
[8] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]// Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). 2005,1:886-893.
[9] HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006,70(1-3):489-501.
[10]梁敏健,崔啸宇,宋青松,等. 基于HOG-Gabor特征融合与Softmax分类器的交通标志识别方法[J]. 交通运输工程学报, 2017,17(3):151-158.
[11]QIAN R Q, ZHANG B L, YUE Y, et al . Robust Chinese traffic sign detection and recognition with deep convolutional neural network[C]// Proceedings of the 2015 11th International Conference on Natural Computation (ICNC). 2015:791-796.
[12]孙伟,杜宏吉,张小瑞,等. 基于CNN多层特征和ELM的交通标志识别[J]. 电子科技大学学报, 2018,47(3):343-349.
[13]伍锡如,雪刚刚. 基于图像聚类的交通标志CNN快速识别算法[J]. 智能系统学报, 2019,14(4):670-678.
[14]PAL N R. A primer on cluster analysis: 4 basic methods that (usually) work [book review][J]. IEEE Computational Intelligence Magazine, 2017,12(4):98-100.
[15]何锐波,狄岚,梁久祯. 一种改进的深度学习的道路交通标识识别算法[J]. 智能系统学报, 2020,15(6):1121-1130.
[16]STALLKAMP J, SCHLIPSING M, SALMEN J, et al. The German traffic sign recognition benchmark: A multi-class classification competition[C]// Proceedings of the 2011 International Joint Conference on Neural Networks. 2011:1453-1460.
[17]MATHIAS M, TIMOFTE R, BENENSON R, et al. Traffic sign recognition: How far are we from the solution?[C]// Proceedings of the 2013 International Joint Conference on Neural Networks (IJCNN). 2013. DOI: 10.1109/IJCNN.2013.6707049.
[18]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:770-778.
[19]SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
[20]LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:936-944.
[21]WEI X S, LUO J H, WU J X, et al. Selective convolutional descriptor aggregation for fine-grained image retrieval[J]. IEEE Transactions on Image Processing, 2017,26(6):2868-2881.
[22]ROY A G, NAVAB N, WACHINGER C. Concurrent spatial and channel ‘squeeze & excitation’ in fully convolutional networks[C]// Proceedings of the 2018 International Conference on Medical Image Computing and Computer-assisted Intervention. 2018:421-429.
[23]HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020,42(8):2011-2023.
[24]XIE Y, LIU L F, LI C H, et al. Unifying visual saliency with HOG feature learning for traffic sign detection[C]// Proceedings of the 2009 IEEE Intelligent Vehicles Symposium. 2009:24-29.
[25]梁琳,何卫平,雷蕾,等. 光照不均图像增强方法综述[J]. 计算机应用研究, 2010,27(5):1625-1628.
[26]SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:4510-4520.
[27]CIRESAN D, MEIER U, MASCI J, et al. A committee of neural networks for traffic sign classification[C]// Proceedings of the 2011 International Joint Conference on Neural Networks. 2011:1918-1921.
[28]SERMANET P, LECUN Y. Traffic sign recognition with multi-scale convolutional networks[C]// Proceedings of the 2011 International Joint Conference on Neural Networks. 2011:2809-2813.
|