[1] BALOG M, GAUNT A L, BROCKSCHMIDT M, et al. Deepcoder: Learning to write programs[J]. Machine Learning, 2017, arXiv:1611.01989.
[2] ERHAN D, SZEGEDY C, TOSHEV A, et al. Scalable object detection using deep neural networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014:2155-2162.
[3] NAKJAI P, KATANYUKUL T. Hand sign recognition for Thai finger spelling: An application of convolution neural network[J]. Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, 2019,91(2):131-146.
[4] 朱亮. 卷积神经网络的全可编程SOC实现[D]. 昆明:云南大学, 2017.
[5] 邹蕾,张先锋. 人工智能及其发展应用[J]. 信息网络安全, 2012(2):11-3.
[6] HAILESELLASIE M, HASAN S R, KHALID F, et al. FPGA-based convolutional neural network architecture with reduced parameter requirements[C]// 2018 IEEE International Symposium on Circuits and Systems. 2018:1-5.
[7] CHENG Y, WANG D, ZHOU P, et al. Model compression 〖HJ1.08mm〗and acceleration for deep neural networks: The principles, progress, and challenges[J]. IEEE Signal Processing Magazine, 2018,35(1):126-136.
[8] 杨扬,蓝章礼,陈巍. 基于统计分析的卷积神经网络模型压缩方法[J]. 计算机系统应用, 2018,27(8):53-59.
[9] 邹月娴,余嘉胜,陈泽晗,等. 图像分类卷积神经网络的特征选择模型压缩方法[J]. 控制理论与应用, 2017,34(6):746-752.
[10]黄芬芬. 深度卷积神经网络模型压缩方法研究及应用[D]. 北京:北京邮电大学, 2018.
[11]DENTON E L, ZAREMBA W, BRUNA J, et al. Exploiting linear structure within convolutional networks for efficient evaluation[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. 2014:1269-1277.
[12]JIAO L, LUO C, CAO W, et al. Accelerating low bit-width convolutional neural networks with embedded FPGA[C]// 2017 27th International Conference on Field Programmable Logic and Applications. 2017:1-4.
[13]SAHA S, VARMA G, JAWAHAR C V. Compressing deep neural networks for recognizing places[C]// 2017 4th IAPR Asian Conference on Pattern Recognition. 2017:352-357.
[14]HAN S, MAO H, DALLY W J. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding[J]. Computer Vision and Pattern Recognition, 2016, arXiv:1510.00149.
[15]WEI X, CHEN H, LIU W C, et al. Mixed-precision quantization for CNN-based remote sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2020(99):1-5.
[16]QIU J T, WANG J, SONG Y, et al. Going deeper with embedded FPGA platform for convolutional neural network[C]// Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 2016:26-35.
[17]ARKAH Z M, ALZUBAIDI L S. Convolutional neural network with global average pooling for image classification[C]// International Conference on Electrical, Communication, Electronics, Instrumentation and Computing. 2020:171-180.
[18]PANG Y W, SUN M L, JIANG X C, et al. Convolution in convolution for network in network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016(99):1587-1597.
[19]SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015:1-9.
[20]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
[21]KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017,60(6):84-90.
[22]YANG Z J, LEI WANG L, LUO L, et al. Bactran: A hardware batch normalization implementation for CNN training engine[J]. IEEE Embedded Systems Letters, 2021,13(1):29-32.
|