计算机与现代化 ›› 2021, Vol. 0 ›› Issue (09): 51-56.

• 算法设计与分析 • 上一篇    下一篇

基于组合优化的Kriging参数估计算法

  

  1. (大连东软信息学院计算机学院,辽宁大连116023)
  • 出版日期:2021-09-14 发布日期:2021-09-14
  • 作者简介:王红(1974—),女,河北饶阳人,教授,博士,研究方向:生物网络,优化算法,E-mail: wanghong@neusoft.edu.cn。
  • 基金资助:
    辽宁省自然科学基金资助项目(20070540049)

Kriging Parameter Estimation Algorithm Based on Combinatorial Optimization

  1. (School of Computer Science, Dalian Neusoft University of Information, Dalian 116023, China)
  • Online:2021-09-14 Published:2021-09-14

摘要: 在使用常微分方程组描述的数学模型进行参数估计时,本文使用Kriging代理模型完成优化过程。该代理模型通过少量数据点的训练即可部分替代计算费时的原始目标函数优化过程,因此可以节省大量的计算时间。在Kriging代理模型精化过程中,查找新增点的优化算法对参数估计的结果有重要影响。本文针对非线性且具有sloppiness属性的常微分方程组形式的参数估计问题,组合具有二阶动量特征的Adam算法及一阶动量梯度下降算法的各自优势用于搜索模型精化时所需添加的新样例点,从而提高收敛速度及查找质量。通过与其他优化算法相比对,验证了该组合算法的实际有效性。

关键词: 组合优化, 参数估计, Kriging代理模型

Abstract: Kriging surrogate can be used to identify the parameters for the mathematical models described by ordinary differential equations. By training a relatively small set of samples, Kriging surrogate can partially replace the time-consuming original objective function optimization process, so it can save a lot of computation time. And the optimization algorithm of searching new samples has major impacts on result of the parameter estimation during the process of refining Kriging surrogate models. For the problem of parameters estimation described by ordinary differential equations with nonlinearity and sloppiness, this paper combines the advantages of Adam with second order momentum and SGD with momentum to search for new sample points that need to be added during model refinement, so as to improve the convergence speed and search quality. Compared with other optimization algorithms, the effectiveness of the proposed algorithm is verified.

Key words: combinatorial optimization, parameter estimation, Kriging surrogate model