计算机与现代化 ›› 2025, Vol. 0 ›› Issue (01): 94-99.doi: 10.3969/j.issn.1006-2475.2025.01.015

• 算法设计与分析 • 上一篇    下一篇

基于改进YOLOv8的探地雷达管线目标检测方法


  

  1. (广州市城市规划勘测设计研究院有限公司,广东 广州 510060)
  • 出版日期:2025-01-27 发布日期:2025-01-27
  • 基金资助:
    国家重点研发计划项目(2022YFB3903405); 广州市城市规划勘测设计研究院科技基金资助项目(RDI2220201088); 广东省城市感知与监测预警企业重点实验室基金资助项目(2020B121202019); 广州市资源规划和海洋科技协同创新中心项目(2023B04J0326)

Ground Penetrating Radar Pipeline Object Detection Method Based on Improved YOLOv8

  1. (Guangzhou Urban Planning & Survey Design Research Institute Co., Ltd., Guangzhou 510060, China)
  • Online:2025-01-27 Published:2025-01-27

摘要: 针对传统探地雷达管线目标检测方法存在的无法精确定位管线、解译过程耗时长效率低下、复杂背景噪声干扰等问题,本文设计一种基于YOLOv8的探地雷达图像管线目标检测方法,对原YOLOv8网络进行改进。首先,在主干网络中引入PConv算子,使网络结构更加轻量化,加快模型处理速度,减少冗余计算和内存访问。其次,引入Triplet Attention模块以增强模型在不同维度间的特征提取能力,提高复杂背景下的目标检测精度。最后,将边界框损失函数替换为Wise-IoU,提升边界框的回归性能和鲁棒性。以探地雷达管线数据集为例进行实验,结果表明,本文提出的改进模型在检测精度与计算开销上取得了更好的效果。

关键词: 探地雷达, 目标检测, 深度学习, YOLO, 注意力机制

Abstract: Addressing the issues of traditional ground penetrating radar (GPR) pipeline object detection methods, such as the inability to precisely locate pipelines, time-consuming and inefficient interpretation processes, and interference from complex background noise, this paper designs a GPR image pipeline object detection method based on YOLOv8, with improvements made to the original YOLOv8 network. First, the PConv operator is introduced into the backbone network to make the network structure more lightweight, speeding up the model’s processing speed, and reducing redundant computations and memory access. Second, the Triplet Attention module is introduced to enhance the model’s feature extraction ability across different dimensions, improving object detection accuracy in complex backgrounds. Lastly, the bounding box loss function is replaced with Wise-IoU to improve the regression performance and robustness of the bounding boxes. This paper conducts experiments using a GPR pipeline dataset, and the results show that the improved model proposed in this paper achieves better performance in terms of detection accuracy and computational cost.

Key words:  , ground penetrating radar, object detection, deep learning, YOLO, attention mechanism

中图分类号: