计算机与现代化 ›› 2025, Vol. 0 ›› Issue (01): 44-49.doi: 10.3969/j.issn.1006-2475.2025.01.008

• 人工智能 • 上一篇    下一篇

位置自适应卷积PointNet++的点云数据分类方法




摘要:
关键词:
中图分类号:     文献标志码:A      DOI: 



Abstract: 
Key words:

  

  1. (西安工程大学计算机科学学院,陕西 西安 710660)
  • 出版日期:2025-01-27 发布日期:2025-01-27
  • 基金资助:
    陕西省自然科学基础研究计划重点项目(2018JZ6002)

Point Cloud Data Classification Method of PointNet++ with Position Adaptive Convolution

  1. (School of Computer Science, Xi’an Polytechnic University, Xi’an 710660, China)
  • Online:2025-01-27 Published:2025-01-27

摘要: 针对复杂场景中点云数据分类精度低问题,提出一种基于位置自适应卷积的PointNet++深度神经网络模型。由于位置自适应卷积具有较强捕捉细粒度局部特征能力,能充分获取三维点云的空间变化和几何结构特征信息,故本文在PointNet++基础上,首先通过最远点采样获取关键点,其次根据关键点使用K最近邻方法(KNN)实现分组,然后由位置自适应卷积代替原方法中的MLP提取每组的局部特征,最终完成点云分类。在2个公开的点云数据集S3DIS、Semantic3D上对本文方法进行多次对比实验,实验结果表明,本文方法在室内数据集S3DIS上的总体精度和mIoU较PointNet++网络分别提高约2.7个百分点和3.2个百分点,在室外数据集Semantic3D上的总体精度和mIoU PointNet++分别高出约2.5个百分点和2.1个百分点。

关键词: 点云分类, 位置自适应卷积, PointNet++, 深度学习, 局部特征 ,

Abstract: Aiming at the problem of low classification accuracy of point cloud data in complex scenes, a PointNet++ deep neural network model based on position adaptive convolution is proposed. Since adaptive position convolution has strong ability to capture fine-grained local features and can fully obtain the spatial variation and geometric structure feature information of three-dimensional point clouds, on the basis of PointNet++ network, the proposed method in this paper first obtains the key points through the farthest point sampling, and then uses the K nearest neighbor method to realize grouping according to the key points, and then using the adaptive position convolution replaces the MLP in the original method to extract the local features of each group, and finally completes the point cloud classification. The proposed method was compared on two public point cloud datasets S3DIS and Semantic3D. Experimental results show that the overall accuracy and mIoU of the proposed method on the indoor dataset S3DIS are about 2.7 percentage points and 3.2 percentage points higher than PointNet++ network, respectively, and the overall accuracy and mIoU of the outdoor dataset Semantic3D are about 2.5 percentage points and 2.1 percentage points higher than PointNet++.

Key words:  , point cloud classification, position adaptive convolution, PointNet++, deep learning, local feature

中图分类号: